六年级数学下册《圆锥的体积》教学设计优秀篇1

教学内容:

九年义务教育六年制小学数学第十二册P32页。

教学目标:

1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

3、进一步培养学生将所学知识运用和服务于生活的能力。

教学重点:

灵活运用圆柱圆锥的有关知识解决实际问题。

教学难点:

同教学难点。

设计理念:

练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

教学步骤、教师活动、学生活动

一、复习铺垫、内化知识。1.圆锥体的体积公式是什么?我们是如何推导的?

2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3.求下列圆锥体的体积。

(1)底面半径4厘米,高6厘米。

(2)底面直径6分米,高8厘米。

(3)底面周长31.4厘米。高12厘米。

4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

学生独立练习,互相批改,指出问题。

学生交流一下这几题在解题时要注意什么?

二、丰富拓展、延伸练习。1.拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2.完成31页第5题。讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

三、充分提高,全面升华。

1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

3.讨论练习八蒙古包所占空间的大小的方法。

(1)蒙古包是由哪几个部分组成的'?

(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

4.交流一下本节课的收获。

学生分组讨论后动手实践并计算。

学生先交流。

四、全课总结,内化知识。

1.提问:

(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

2.学有余力的同学思考38页思考题。

3.作业:练习八6、7、8

学生独立练习

六年级数学下册《圆锥的体积》教学设计优秀篇2

教学目标:

1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

教学过程:

一、复习导入

师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?(指名学生回答)

2、圆锥有什么特征?

同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的`体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)

二、探究新知

课件出示等底等高的圆柱和圆锥

1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

学生回答:它们是等底等高的。

猜想:

(1)、你认为圆锥体积的大小与它的什么有关?

(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

2、学生动手操作实验

(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

(2)、通过实验,你发现了什么?

小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积=1/3×圆柱体积)

师:圆柱的体积等于什么?

生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积=1/3×底面积×高)

师:用字母应该怎样表示?(V=1/3sh)

师:在这个公式里你觉得哪里最应该注意?

三、教学试一试

一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

四、巩固练习

1、计算圆锥的体积

2、判一判

3、算一算

4、拓展延伸

五、总结

通过这节课的学习,你有什么收获呢?

六、板书:

圆锥的体积=圆柱的体积×1/3

圆锥的体积=底面积×高×1/3

用字母表示V=1/3sh

<