数学建模的能力范文篇1
关键词:高校;数学教学;数学建模;应用;学生能力的培养
近半个世纪以来,数学的形象发生了很大的变化,人们逐渐认识到数学的发展与同时期社会的发展有着密切的关联,许多数学内容都是因社会需要而产生的,产生了许多数学分支。数学教学的重要任务就是使学生能够将所学数学知识和数学方法应用于社会生活和生产实践当中。
数学模型是一种抽象的模拟,它用数学符号、数学公式、程序、图、表等刻画客观事物的本质属性与内在联系,是为一定目的对部分现实世界而作的抽象、简化的数学结构。创建一个数学模型的全过程称为数学建模。即用数学的语言、方法、去近似地刻画该实际问题,并加以解决的全过程。它经历了对实际问题的抽象、简化、确定变量和参数;并用某些特征建立起变量与参数间的确定的数学问题(一个数学模型);求解这个数学问题;解析并验证所得到的解:从而确定能否用于解决实际问题的多次循环、不断深化的过程。从教学的角度,数学建模的重点不是学习理解数学本身,而在于数学方法的掌握、数学思维的建立。通过渗透数学建模思想使学生将学习过的数学方法和知识同周围的现实世界联系起来,和真正的实际应用问题联系起来。建立数学模型的流程图,如图:
上图揭示了从提出问题到解决问题的认识过程,这是从数学的角度认识的物质及其运动的过程,符合认识来源于实践的认识规律。如历史上著名的“哥斯尼堡七桥问题”,大数学家欧拉巧妙地运用数学知识把小岛、河岸抽象成“点”,把桥抽象成“线”,成功地构造出平面几何的“精品”模型,成为数学史上解决历史问题的经典。如今,科学技术的发展、企业生产过程的控制、宏观经济现象的研讨等,都离不开数学建模。实际上,数学建模已成为现代社会运用数学手段解决现实问题的科学方法,掌握简单的数学建模与应用是现代人理应具备的一种能力。
一、在高等数学教学中培养学生的数学建模思想的途径
(一)在数学概念的引入中渗透数学建模思想
数学的定义、概念是数学教学的重要内容。下面以定积分的定义为例,谈谈如何在数学概念的引入中渗透数学建模思想;设计如下教学过程:
(1)实际问题:a.如何求曲边梯形的面积?b.如何求变速直线运动的路程?c.如何求直线运动时的变力做功?
(2)引导学生利用“无限细分化整为零一局部以直代曲取近似一无限积累聚零为整取极限”的微积分的基本思想,得到问题a的表达式。
(3)揭示如上定型模型的思维牵连与内在联系,概括总结提高为:不同的实际意义,但使用的方法相同,从求解步骤上看,都经分割一取近似一求和一取极限这四步,从表达式在数量关系上的共同特征,可抽象成数学模型:引出定积分的定义.
(4)模型应用:回到实际问题中。数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题:a.一根带有质量的细棒长x米,设棒上任一点处的线密度为,求该细棒的质量m。b.在某时刻,设导线的电流强度为,求在时间间隔内流过导线横截面的电量。
(二)在应用问题教学中渗透数学建模思想
在讲解导数、微分、积分及其应用时,可编制“商品存储费用优化问题、批量进货的周转周期、最大收益原理、磁盘最大存储量、交通管理中的黄灯、红灯、绿灯亮的时间”等问题,都可用导数或微积分的数学方法进行求解。
概率与统计的应用教学中,“医学检验的准确率问题”、“居民健康水平的调查与估测”、“临床诊断的准确性”、“不同的药物有效率的对比分析”等实际应用问题都可以用概率与统计的数学模型来解决。
在线性代数的应用问题中,可以建立研究一个种群的基因变异,基因遗传等医学问题的模型,使数学知识直接应用于学生今后的专业中,有效的促进了学生学习高等数学的积极性,提高了数学的应用意识。
建模过程给学生提供了联想、领悟、思维与表达的平台,促使学生的思维由此及彼、由浅入深的进行,随着模型的构造和问题的解决,可以让学生养成科学的态度,学会科学的方法,逐步形成创新思维,提高创性能力。
二、数学建模在高等数学教学中的作用
通过数学建模教学可以培养学生的多方面的能力:(1)培养学生“双向翻译”的能力,即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果的能力。(2)培养学生的创造能力、丰富的联想能力,洞察力。因为对于不少完全不同的实际问题,在一定的简化层次下,它们的数学模型是相同或相近的,这正是数学广泛应用的表现、从而有利于培养我们广泛的兴趣、熟能生巧,触类旁通。(3)培养学生熟练使用现代技术手段的能力、数学模型的求解需借助于计算机及相应的各种数学软件包,这将大大节省时间,在一定阶段得到直观的结果,加深对问题理解。(4)培养学生综合应用数学知识及方法进行分析、推理、证明和计算的能力。在数学建模过程中需要反复应用数学知识与数学思想方法对实际问题进行分析、推理和计算,才能得出解决实际问题的最佳数学模型,寻找出该模型的最优解。所以在建模过程中可使学生这方面的能力大大提高。(5)培养学生组织、协调、管理特别是及时妥协的能力。
通过数学建模活动还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养自信心和正确的数学观,数学建模充满挑战和创造,成功的数学建模将给学生心情的喜悦与自信。同时,数学建模有助于学生体会到成功地运用数学解决实际问题,一定要与实际问题相关的学科知识相结合,要与有关人员相结合,这是正确的数学观的形成。数学建模的开展可整体提高学生的数学素质。
总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。
参考文献:
[1]徐全智,杨晋浩,数学建模.北京:高等教育出版社,2009
数学建模的能力范文篇2
【关键词】数学建模;竞赛;创新能力培养
1前言
全国研究生数学建模竞赛主要目的在于激发研究生群体的创新能力和学习兴趣,提高研究生建立数学模型和运用计算机解决实际问题的综合能力。通过建模竞赛,使得参赛学生拓宽知识面,培养创新精神和团队合作意识,促进研究生中优秀人才的脱颖而出、迅速成长,同时更加能够推动研究生教育改革,增进各高校之间及高校、研究所与企业之间的交流与合作。研究生数学建模竞赛自举办之日起就得到了全国大部分高校的积极响应,其规模和影响力巨大,在广大研究生中打下了扎实的基础。
2数学建模竞赛有助于研究生创新能力的培养
如何借助研究生数学建模竞赛进一步促进研究生数学教学改革,带动学风建设,推动创新人才培养,需要不断探索与实践,也是数学建模工作的重中之重。针对西北民族大学研究生的实际情况,我们细化建模的每一步工作,大致从建模准备、建模过程、建模经验总结等方面进行研究生创新能力强化培养。
2.1建模准备工作对研究生创新能力的培养
2.1.1做好赛前建模培训培训分为两个阶段:第一阶段为强化基础阶段,通过教师讲解与课下学生自学的方式,使学生掌握数学建模的基本方法和应用软件求解模型的基本技能。第二个阶段为案例分析与实战训练阶段。通过对历年具有代表性的真题、优秀论文的分析与点评,让学生领会建模的思想、方法与步骤,掌握建模论文的写作方法与技巧。2.1.2组织校内建模竞赛校内数学建模竞赛不仅是检验研究生运用数学建模方法解决实际问题的综合能力的平台,而且还是选拔全国研究生数学建模竞赛参赛队的资格赛。在参加竞赛时,我们鼓励参赛队自主选择参赛题目而不加干预,自主制定解题方案而不参与具体指导,为创新思维创造了自由的学术氛围。2.1.3查缺补漏教学方面:通过校内建模竞赛,指导教师应总结出学生的进步与欠缺,根据建模过程中的典型问题再次进行讲解,然后完成自己的模型;而教师团队要对所有同学犯的重点错误进行总结,让成功与失败的同学共同探讨交流经验,督促学生有则改之无则加勉。指导老师则要求有更深厚的建模专业知识和软件操作能力。管理方面:竞赛的组织策划、教学培训等方面要再次制定更加有效的方案,把数学建模竞赛和数学建模教育结合起来,在日常教学中逐渐渗入建模思想和方法,使得学生与教师、建模与课堂能够有效的衔接,形成一种模式。同时设有专项经费保障。
2.2建模比赛过程对研究生创新能力的培养
研究生数学建模竞赛的题目都是开放且有选择的。大多数学模型问题并非像考试题目那么具体,给出的仅仅是某些数据,需要参赛者从大量的数据中找出问题,建立适合于一般问题的模型,这就要求研究生有提出问题的能力。2.2.1建模前准备在拿到题目要确定选题之前,参赛选手需要去图书馆借阅相关书籍,或是到互联网查阅有关知识。在这个过程中,学生的知识在不断地得到扩充,不断地融合,为培养学生的自学能力以及使用文献资料的能力创设了良好的环境。建模前的准备过程是参赛队员对知识深入理解的过程,是对知识结构的优化过程,也是知识创新的培养过程。2.2.2模型的假设与建立根据准备好相关知识确定选题后,接下来就是根据所选题目建立数学模型。第一步是对选题进行模型假设。这个过程需要参赛队员根据题目所示的现实问题看到其本质,通过形象思维来简化问题,最后做出合理的想象与假设,从而实现用数学语言来表达所要解决的问题的目的。数学建模的选题一般是来源于工业、农业、工程技术和管理科学等方面,经过适当的加工后形成的实际问题。在这个过程中学生面对的往往是一个从未接触过的问题,所以必须要拓宽思路,大胆想象,针对具体问题具体分析,大胆地做出假设,充分发挥创造力和想象力。假设后进行模型的建立,建立过程往往需要运用所学的所有知识,通过自己的思维和想象选择恰当的方法并加以改造,使得建立的模型更具实用性。这是理论联系实际的最好的实践。2.2.3模型的求解与检验模型建立后,接着就是对所建模型进行求解。这个过程大多需要参赛选手运用相关的数学软件进行求解,一般情况下大致为Matlab、SPSS、Lingo等。这就促使参赛选手学习更多的计算机编程的知识。参赛选手通过编写程序,运行程序、根据运行结果对相应程序进行调试和修改,最终得出的程序就可求解所建立的模型。建模的整个过程中,参赛选手不仅需要综合以前所学过的所以知识,而且还学习了更多的编程知识,拓宽了知识面,也加深了知识的深度。通过竞赛把理论知识应用到实际中去,充分体会数学的魅力所在。“一次比赛,终身受益”是许多参赛同学的共同感受。建模比赛重要的不是成绩,而是在整个过程中学到了什么,这是数学建模竞赛对研究生创新能力的培养的最重要的作用。
2.3建模后期延拓对研究生创新能力的培养
经历过数学建模竞赛后,学生提高了充分运用所学知识的能力,提高了计算机编程能力,提高了面对未知提问发挥创造力、洞察力及解决的逻辑推理的能力,培养了合作精神和交流能力,培养了规范的数学用语的表达能力,培养了正确的数学思想和数学观,培养了对数学能力。更重要的,锻炼了学生的交流能力,培养了学生团队合作的意识。建模过程是艰难而枯燥的,参赛队员只有保持乐观的心态,积极奋发,知难而进,才能取得成功。这种精神更是人生不可多得的财富。
3结语
数学教育家萧树铁先生曾经说过:“全国大学生数学建模竞赛活动是以数学应用为突破点,以竞赛为动力,为高等院校教学改革提供一个契机和先导”。而全国研究生数学建模竞赛亦然。研究生数学建模竞赛活动不仅锻炼了参赛队员运用理论知识联系解决实际问题的能力,让学生拓展了自己的思维和知识面,增强了团队意识和交流能力,而且是发现学生潜在能力和兴趣的极佳的方式,更重要的是,也使培训老师提升了自己的教研水平。总之,研究生数学建模竞赛是有利的“助推器”,学生应积极参与到其中,学校学院层面应大力鼓励和支持。
参考文献:
[1]李乔祥.论数学建模竞赛对提高学生综合素质的作用[J].高等理科教育,2004,53(1):60~63.
数学建模的能力范文篇3
关键词:高职;数学模型;应用能力
数学最显著的特点之一就是其应用极其广泛。在我们日常生活中随处都能找到数学的影子。在社会生活的各个领域,都在运用着数学的概念、法则和结论。很多看似和数学无关的问题都可以运用数学工具加以解决。但很多高职学生由于基础薄弱,学习数学的兴趣不高,不知道数学有什么用途,他们认为数学是枯燥无味的,学习数学就是为了应付考试。而现在数学素养已成为公民文化素养的重要内容,更是大学生不可或缺的基本素质。高等数学教学一个很突出的方面就是培养学生的应用能力。数学模型是沟通实际问题与数学工具之间的桥梁,建立和处理数学模型的过程,实际上就是将数学理论知识应用于实际的过程。本文拟就数学模型在教学中的应用作粗浅探讨。
重视知识应用过程,提高学生学习数学的兴趣
学生能否对数学产生兴趣,主要依赖于教学过程,与教学内容和教学方法的选择和应用密切相关。因此,教师必须在教法和学法指导上多下工夫,狠下工夫,从数学应用的角度处理数学、阐释数学、呈现数学,以提高学生的数学理论知识和操作水平;必须加强数学应用环节的实践,注重用数学解决学生身边的问题,用学生容易接受的方式展开数学教学,注重学生的亲身实践;必须重视在应用数学中传授数学思想和方法,把培养学生解决实际问题的能力作为教学内容的主线,运用“问题情境—建立模型—解释与应用”的教学模式,多角度、多层次地编排数学应用的内容,有效地激发学生的学习兴趣。
例1:7只茶杯,杯口全部向上,每次翻转其中的4只(杯口向上的变为杯口向下,杯口向下的变为杯口向上)。能否经过有限次的翻转,使得7只茶杯的杯口全部向下?
分析:将7只茶杯用字母分别表示为A1、A2、…A7,茶杯的杯口朝上记为Ai=+1,杯口朝下记为Ai=-1(i=0,1,2,…7),每次翻转改变其中的4只杯子的杯口方向,相当于7个字母中的4个字母取值改变符号,即相当于将其中4个字母各乘以-1。
问题归结为:已知7个字母A1、A2、…A7,在开始时全部取值为+1,每次改变其中4个字母的符号,经过有限次后能否将7个+1变为7个-1?
解析:考察经过第i次翻转的7个字母的乘积Mi=A1A2…A7,开始的时候相当于7个字母取值全为+1,它们的积M0=A1A2…A7=(+1)7=+1;经过一次翻转后,M1=A1A2…A7=M0(-1)4=+1;经过两次翻转后,M2=A1A2…A7=M1(-1)4=+1;……所以不论经过多少次翻转,7个字母的乘积保持不变,仍为+1。另一方面,杯口全部朝下,相当于7个字母全部取值为-1,它们的乘积是-1。这就表明,经过有限次的翻转,7个+1绝不会变为7个-1。因此,经过有限次的翻转,不能使7只茶杯的杯口全部朝下。
例2:某人第一天上午8点由山下出发,下午15点抵达山顶;第二天上午8点由山顶出发按原路返回,并于下午15点回到山下原出发点。问在两天的行程中是否存在这样一个点,该人经过这个点时,两天的手表指向同一时刻?
分析:这个问题初看起来不容易得到答案。我们可以换一个角度思考,把该人在两天中做的事改到同一天中来做,设想将这个人再“克隆”出一个人来,上午8点该人由山下出发,而“克隆人”同时由山上出发,由于走的是同一条路线,因此该人与其克隆人必定在中途相遇,在相遇点处,则手表指向同一时刻。
下面用数学工具证明。该问题与行走的路线长度、形状无关,不失一般性,不妨设行走的路线是线段AB,设行走的时间t是位置x的连续函数。
第一天,AB,设t=f(x),A≤x≤B,且f(A)=8,f(B)=15;第二天,BA,t=g(x),A≤x≤B,且g(A)=15,g(B)=8。
问题归结为:已知连续函数f(x)、g(x),A≤x≤B,且f(A)=8,f(B)=15;g(A)=15,g(B)=8。求证:存在点x0∈[A,B],使得f(x0)=g(x0)。
证明:设H(x)=f(x)-g(x)A≤x≤B,则H(x)也是连续函数,且H(A)=f(A)-g(A)=8-150,因此存在x0∈[A,B],使得H(x0)=0,即f(x0)=g(x0)。
通过趣味数学应用的案例分析与数学建模,体现了数学应用的广泛性,在一定程度上帮助学生看到数学生动、有趣、甚至好玩的一面,以丰富数学学习的内容,提高学生学习数学的积极性、主动性、探索性。
另外,课堂教学中应充分发挥学生的主体作用和教师的主导功能。教师可根据教学内容的特点,精心组织、科学设计,把抽象的概念、深奥的原理,寓于生动、有趣的典故、发现史中,适当、合理地运用图片、模型、多媒体教学等手段,促进理论与实际的有机结合,使学生产生浓厚的学习兴趣。只有当学生有了学习兴趣,思维达到“兴奋点”,才能带着愉悦、激昂的心情去面对和克服一切困难,执着地去比较、分析、探索认识对象的发展规律,展现自己的智能和才干。这无疑是让学生体验成功的重要举措,更是提高学生数学兴趣的有效途径。当学生应用数学知识去解决了一个个实际问题,他们的学习兴趣必将被更进一步地激发起来,成为进一步学习的内驱力。
通过“数学建模”活动和教学,培养学生运用数学的能力
培养学生数学应用能力是高职数学教育的根本任务,是数学教学目的中的重要内容。数学应用能力是一种综合能力,它离不开数学运算、数学推理、空间想象等基本的数学能力。应把应用问题的渗透和平时教学有机地结合起来,循序渐进。在数学应用意识和能力的培养中,应特别重视学生探索精神和创新能力的培养,把数学应用问题设计成探索和开放性试题,让学生积极参与,在解题过程中充分体现学生的主体地位。在运用数学知识去解决实际问题时,首先要建构实际问题的数学模型,然后用数学理论和方法找出结果并用于实际,这样既可解决实际问题,又能促进数学新思想、新理论的建立和发展。因此“数学建模”是沟通数学理论与实际的中介和桥梁,培养学生“数学建模”能力是培养学生数学思维和应用能力的重要手段,在教学过程中穿插建模能力训练对学生是十分必要的。培养学生建模能力是一个循序渐进的过程。开始应从简单问题入手,师生共同创建模型,引导学生初步掌握应用数学形式建构模型的方法,培养学生积极参与和勇于创造的意识。随着学生能力和经验的增加,可通过实习作业或小组活动的形式,由学生展开分析讨论,分析每种模型的有效性,提出修改意见,讨论是否有进一步扩展的意义。这样可以纠正学生理解上存在片面性的问题,在不断发展、不断创造中培养信心。虽然高职学生的数学基础知识对于某些数学模型的建立略显不够,但只要花很短的时间补一下,还是可以解决问题的,关键是培养学生如何将所学数学理论与实践相结合的能力。
例如,高等数学中一个非常简单的一阶微分方程dxdt=rx(x-k)在商业上可解释为新产品的销售模型,在医学上可解释为传染病的传播模型,在生物学方面,它就是著名的Logestic模型,用以解释生物在一定约束条件下的数量增长模式。这样,简单的数学问题便得以广泛地应用。通过这样的教学过程能够使学生开阔眼界,将数学知识应用到实际生活之中。
结合专业,提高学生应用数学的能力
在“数学建模”课程中,除介绍一些社会或经济中的数学应用问题外,还要根据不同专业对数学的应用水平及方法的不同要求,总结数学应用的内容、方法的差异性,找到各专业与数学的结合点,用具体的专业例子,归纳应用数学的各种模型,并以此为例,培养各专业学生应用数学的兴趣。一般来讲,对一个专业问题,要建立一个数学模型,就必须了解专业上的一些规律和经验,提出许多与量有关的合理假设。根据专业知识,利用规律,通过一些数学方法,如微元法等,列出等式,即可建立一个数学模型。建立了数学模型,就找到了实际问题的规律及解释方法。数学模型可以表现为专业公式或定性结果等。有了这样的初步认识,学生就可以知道,要想建立模型,首先,要进行专业性的实验、调查、分析,得到反映问题本质的量的概念、量之间的关系以及影响结果的一些因素;其次,需分析这些因素之间以何种形式相互影响,是否要利用其他的基础学科,如物理学、力学等的规律,绕开次要因素,简化因素间的影响关系,作出合理简化假设;最后,根据问题的性质如连续型、离散型、随机型、模糊型等,列出数学方程或函数、限制条件等,将专业问题完全转化为一个数学问题,用我们学过的数学方法解决它。例如,在机械专业的《机械设计》中二级圆柱齿轮减速器的传动比最优分配模型为minf(A)=2A(i+i-1+2)/d,其中,A为中心距,d为齿轮分度圆直径,i为等级减速比。该模型根据几何原理即可得出,它是一个一维无约束最小化问题d。在实际教学中,有许多专业问题学生都能够利用所学的专业知识和数学知识建立数学模型,这样既复习了所学数学知识,又提高了解决专业实际问题的能力。
总之,数学建模解决问题的实质是学生运用数学的思想、观点、方法等与客观世界相互作用,最终达到解决实际问题为目的的创造性活动。建模的整个过程是数学应用能力的综合体现,也为培养学生这方面的能力提供了一个有益的途径。
参考文献:
数学建模的能力范文1篇4
数学建模是数学走向应用的必经之路,是利用数学方法解决实际问题的一种模式,数学建模是一种微型科研的过程,是进行研究性学习的一种有效组织形式。我国从1992年开始由教育部高教司和中国工业与应用数学学会举办的全国大学生数学建模竞赛已成为我国高校规模最大的课外科技活动。数学建模竞赛提供了学生接触现实问题的一个平台,这对学生把所学的数学、计算机和其他专业知识用于实践提供了舞台,培养了学生分析问题、解决问题的能力,锻炼了学生的创造力、想象力、思维发散能力和创新性思维能力。
将数学建模思想融入高等数学教学是经实践证明的必要且可行的教学方法,这对于推动高等数学教学方法的改革、提高高等数学的趣味性、应用性和教学效果具有深远的意义,全国数学建模竞赛组委会李大潜院士表示“我们要开展数学建模竞赛活动,努力将数学建模思想融入数学类主干课程,让学生在学习知识的同时,有发现和创造的过程”。将数学建模思想融入到数学主干课教学指的是在数学教学中突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系,它的意义在于打破了原有的高等数学课程只重视理论,忽视应用的教学内容安排,它在整个高等数学的教学过程中给学生展示了一个完整的数学,同时也训练了学生的思维推理能力。使学生不仅学到了数学知识,而且增长了应用数学知识解决实际问题的本领。这对于培养学生的创新思维和数学应用能力,提高数学建模竞赛的竞赛水平,提高高等数学的教学质量都具有重要的现实意义。
由于数学建模竞赛对学生的数学水平和科研能力提出了进一步要求,并且据竞赛组委会介绍,目前在全国大学生数学建模竞赛中数学专业的学生仅占10%,参赛的非专业学生占了多数,所以通常准备参加竞赛的学生都要参加学校组织的竞赛培训。那么,学生如何更有效地学习数学建模,教师如何对学生进行竞赛培训才能使数学建模竞赛在培养学生应用创新能力、促进大学数学课程教学改革等方面发挥更大的作用呢?本文将探讨如何使围绕数学建模竞赛开展的一些列教学活动在以下两方面都发挥更大的作用,一方面是将数学建模思想融入数学公共课程从而提高高等数学教学水平,另一方面是通过开展合适的教学培训活动提高数学建模竞赛水平。方法就是改革数学建模竞赛的培训模式,摒弃仅通过短期培训追求某次竞赛成绩的功利心理,制定长期的竞赛培训计划,使围绕竞赛开展的一系列教学活动在教学改革和数学建模竞赛活动中达到相互促进共同提高的作用,实现良性循环,这将是一个值得深入研究的问题。
黑龙江八一农垦大学围绕数学建模竞赛开展了大量的教学活动,经过多年的教学实践和不断地研究探索,在数学建模竞赛的培训策略和模式方面积累了不少经验,并且经过长期实践验证了这些方法不但有利于提高学生学习数学的效率和兴趣,同时对于提高竞赛成绩也是有效的。尤其是近几年学生参加数学建模竞赛的规模增长迅速,参赛学生几乎遍及全校各个专业,学生的学习程度、兴趣爱好等差异性增大;各类数学建模竞赛的试题类型都更趋向于专业性强、交叉性强、复杂性强的新特点。为解决数学建模竞赛所面临的新问题新挑战,需要对数学建模竞赛培训进行更深入的研究,制订数学建模竞赛培训的新模式,这种新方法充分考虑到在高等数学课程中潜移默化的融人数学建模思想这个策略,使学生可以更好地了解数学知识的来龙去脉,建立学数学用数学的思想,提高学生的数学综合素质,同时通过这样的教学活动让学生了解数学建模竞赛,再配合后期的竞赛培训活动从而达到通过数学建模竞赛提高学生综合素质的目的。
二数学建模竞赛培训的新模式
为了让学生通过围绕数学建模竞赛开展的教学活动增强解决实际问题的实践能力,提高数学课程的学习效果和兴趣,将数学建模的思想方法应用于专业课程的学习和专业问题的研究中去,也为了让学生更好地参加各类数学建模竞赛,对数学建模竞赛的培训体系和策略进行了深入研究,采取“三步走”的竞赛培训策略,在培训过程中抓住一条“时间线”,循序渐进的进行数学建模知识和方法的讲授和训练,从大一开始对学生的数学建模活动按照培训计划进行按部就班的培训,从而使数学建模竞赛真正的起到为教学服务的目的。本文介绍的竞赛培训新模式的具体结构框架如图1所示,具体步骤为:
第一步:“润物细无声”――将数学建模思想融入高等数学课程。在保持高等数学课程原有体系和教学学时基本不变的前提下把数学建模思想融人到高数教学中去,一方面可以激发学生的学习高等数学的兴趣,解决高等数学抽象性强、学生在学习过程中感到枯燥无味的问题。另一个方面也让学生感受到数学模型的无处不在和数学思想方法的无所不能,充分调动学生应用数学知识解决实际问题的主动性,从而激发学生对数学建模的兴趣和热情,提高学生学数学和用数学的能力,提高数学建模竞赛水平。
具体的做法是在高等数学课教学过程中有计划地适当渗透数学建模思想,在保持高等数学课程原有体系不变的情况下,在数学概念和定理的引入和应用中融入建模思想。首先,数学概念来源于实际需要是数学思维的细胞,在数学概念的教学中融人数学建模思想就是要讲清楚概念产生的来龙去脉以及数学思维过程,例如定积分的概念本身就是一个完整的数学建模过程,在讲解概念的过程中有意识的渗透数学建模的思想和方法,不仅能使学生记住概念,更重要的是使学生真正了解到问题的本质,培养了建立数学模型解决实际问题的思想。同样,定理的讲解在高等数学的教学中也占有非常重要的地位,在诸如微分中值定理的应用、最小二乘法的应用等内容中都非常适合融人数学建模思想。把这些数学建模思想融入高等数学教学作为数学建模竞赛培训的一部分,制定周密的培训方案,写出具体的培训计划,选用合适的培训教材,编写高等数学应用问题案例。通过这些教学方法和理念的改革可使学生的洞察力、想象力和创造力得到培养和提高,为学生架起一座从数学知识到实际问题的桥梁。
第二步:“更上一层楼”――根据一条“时间线”安排数学建模竞赛辅导。为了让学生了解和掌握更多的数学知识和方法,从而更好地参加各种数学建模竞赛,我们按竞赛的时间分别组织三次培训,每年4月针对东北三省数学建模联赛组织大二学生参加东北赛培训,每年暑假针对全国大学生数学建模竞赛组织全国赛培训,每年1月组织针对美国大学生数学建模竞赛的美国赛培训。采用这种阶段性培训方式,根据培训的时间,在每个培训阶段都制定不同的培训目的,设计不同的培训计划,选择逐渐深入的培训内容,并针对学生具体情况采用自编教材。真正做到因材施教,体现阶段性递进的培训模式。首先,在最开始的在东北赛培训阶段主要讲授数学建模的过程和建模基本方法,Matlnb软件的基本命令以及科技论文的写作等,在这一阶段的培训中各种建模方法不要求学生熟
练掌握它的过程和具体的求解方法,而是要了解这些方法是解决什么问题的?常用于哪些现有的模型中?这种方法对所求问题有哪些要求?它的输入和输出变量都有哪些?到真正用的时候可以在查阅资料现学现用,这一阶段培训的重点是要培养学生根据需要获取知识的兴趣和能力,以及对数学建模的思维和过程的了解和熟悉。在全国赛培训阶段主要补充数学建模的理论知识,继续介绍Lingo/Lindo软件、SASS软件等数学软件的使用,并进行模拟训练强化数学建模竞赛氛围和过程。这一阶段要求学生熟练掌握线性规划、多元统计、插值拟合、微分方程、图论等常用的数学方法,同时了解如排队论、系统模拟等方法,培养学生发现问题、分析问题、应用数学知识建立数学模型解决实际问题的实践能力和上机实验的动手能力。针对美国赛培训主要强化学生的科技英语的阅读、写作能力。训练学生对外文文献的检索和阅读能力,学习了解所学学科的国际前沿的研究动态,提高自己的科研能力和意识。
第三步:“反馈再提高”――赛后研讨,修正数学建模竞赛培训方案。注重赛后总结,是逐步提高竞赛成绩的有效方法。每次竞赛结束以后,首先由指导教师针对赛题进行分析与讲解,帮助学生深入理解问题,然后由各队根据所做结果查找论文工作中的不足,并展开对问题的深入探讨,以小组讨论的形式进行交流,使讨论班上不同的思想火花不断地进行碰撞、交融,所有小组都能够通过讨论而达到共同进步的目的。同时通过开会总结本年度的竞赛工作,参加竞赛学生交流竞赛经验、心得体会、开大会表彰、奖励获奖学生等系列活动,及时发现竞赛培训工作中的问题,总结经验,从而推动学校高等数学课程的教学改革,培养学生应用数学知识解决实际问题的能力,为逐步提高竞赛成绩打下良好的基础。
另外,结合数学建模竞赛培训的过程和参加竞赛中遇到的问题,对数学建模竞赛培训模式进行深入研究,探讨数学建模思想融入高等数学课程的实施方法,改进培训方案中的不足,增删培训内容,修正培训计划,完善数学建模竞赛培训体系。
总之,通过对数学建模竞赛培训模式的研究与实践,构建了新的数学建模教学体系,该教学体系融数学建模理论学习、计算机软件学习和竞赛过程于一体,通过对数学建模教学体系的实施,促进大学数学课程的教学改革,实现将数学建模思想融入高等数学课程的目的,并最终实现其他专业课程的教学改革。实践证明围绕数学建模竞赛开展的教学活动能够为学生更好地参加数学建模竞赛提供了平台,并且能够在促进大学数学课程的教学改革,实现将数学建模思想融入数学类课程方面发挥更大的作用。
参考文献
[1]刘振文,赵广宇,王崇阳.浅谈数学建模竞赛对大学生能力的培养与锻炼[J].才智,2011(32):232.
[2]李大潜,将数学建模思想融入数学类主干课程[J]中国大学数学,2006(1):4-8.
数学建模的能力范文篇5
关键词数学建模职业学校素质教育
随着改革开放的不断深入,市场经济已有较大的发展空间,国家需要培养一大批能适应社会,服务社会的应用型人才;他们能提出问题、分析问题、并能解决问题。这些问题包括社会问题、生产经营问题和日常生活问题等,这就给数学教学提供了一个有利的平台。目前,职业学校又面临一个这样的学习弱势群体一数学功底差,他们认为在职业学校只学一技之长,学数学是无用的。试想有这样想法的职业学校学生对数学的学习又怎能谈得上积极与主动呢?多数学生对数学学习不感兴趣,面对所学专业实际问题往往不知从何着手,不知把错综复杂的实际问题简化、抽象为合理的数学结构,并运用自己掌握的数学知识去分析求解,从而解决实际问题。所以在职业学校数学教学过程中应该培养学生的数学建模能力。
1数学建模的定义、方法、过程步骤
1.1什么是数学建模?当人们面临对一个实际问题时,不是直接就现实材料本身寻找解决问题的办法,而是经过一番必要而且合理的假设和简化,恰当地运用数学语言、方法去近似地刻划实际问题得到一个数学结构(数学模型),通过数学上的结构揭示其实际问题中的含义,合理地返回到实际中去,这个过程就称为数学建模。
数学建模就是建立数学模型。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化能近似解决实际问题的一种强有力的数学手段。
1.2数学建模的方法
数学建模的方法很多,但从理论上讲,主要有以下两种方法:(1)机理建模方法(2)系统辩识建模方法。直接利用观察数据,根据一定的优良准则在模型中找出与数据拟合的最好模拟,这种方法在建立过程控制模型中是常用的。
1.3数学建模的过程步骤
1.3.1分析问题:了解问题的实际背景,掌握第一手资料。
1.3.2假设化简:根据问题的特征和目的,对问题进行化简,并用精确的数学语言来描述。
1.3.3建立模型:在假设的基础上利用适当的数学工具、数学知识、来刻划变量之间的数量关系,建立其相应的数学结构。
1.3.4求解并检验模型:对模型的求解,并将求解结果与实际情况比较,以此来验证模型的准确性。
1.3.5模型分析:如果模型与实际比较吻合,则要对计算的结果给出其实际含义,并进行解释。
事实上,从方法论角度看,数学建模是一种数学思考方法,是解决实际问题的一种强有力的数学工具。从具体教学角度看,数学建模是一种数学活动。
2职业学校素质教育的含义
实施素质教育就是以提高国民素质为根本宗旨,以培养学生的创新精神和实践能力为重点,造就有理想、有道德、有文化、有纪律的德、智、体全面发展的人才。2000年发表的《中国教育绿皮书》将素质教育归为五个方面:面向全体学生;促进学生全面发展;重视学生创新精神与实践能力;发展学生主动精神,注重个性发展;着眼于学生终身可持续发展。因此,职业学校素质教育是一种教育理念实践,其核心是发扬学生的主动精神和注重学生的个性发展,培养学生的创新精神和实践能力。
3数学建模在职业学校素质教育中所起的作用
随着数学教育界中“数学应用意识”教育的不断深入,提高数学应用性的教育迫在眉睫。数学应用性包括两个层次:一是数学的精神、思想和方法;二是数学建模。通过数学建模,使学生可以从熟悉的环境中引入数学问题,增加与生活、生产的联系,培养学生的数学应用意识,巩固学生的数学方法,培养学生的创新意识以及分析和解决实际问题的能力,这正是素质教育和数学教育相结合的目的。
根据数学建模的特点,在数学教学中渗透建模思想,开展建模活动,对职业学校的素质教育具有重要的意义。
3.1数学建模能够促进理论与实践相结合,有利于培养学生应用数学的意识和解决问题的能力
数学建模的过程,是实践一理论一实践的过程,是理论与实践的有机结合。强化数学建模的教学,不仅能使学生更好地掌握数学基础知识,学会数学的思想、方法、语言,也是为了学生树立正确的数学观,增强应用数学的意识,全面认识数学与科学、技术、社会的关系,提高分析问题和解决问题的能力。
3.2数学建模有利于培养学生的创新精神和创造能力
数学建模问题具有一定的开放性,没有一定的规矩可循,没有事先设定的标准答案或答案不是惟一的,具有较大的灵活性。因此需要突破传统的思维模式,面对复杂问题发挥学生的创新精神和创造力、想象力、洞察力以及解决问题的逻辑推理和量化分析能力,善于从实际问题提供的原形中抓住其数学本质,建立新颖的数学模型。
3.3数学建模有利于培养学生的双向翻译能力
数学建模它要求学生运用学过的数学知识,把实际问题翻译成数学模型,又将数学模型的结果用浅显易懂的语言翻译出来,以此来培养学生的双向翻译能力。
3.4数学建模有利于培养学生获取文献资料信息的能力
在信息社会中,大量信息和知识以前所未有的速度传播和扩散,这就要求学生有良好的获取文献资料信息的能力,以便适应现代社会技术创新和知识更新的需要。数学建模问题有强烈的实际背景,涉及到不同的学科领域,问题错综复杂。这就促使学生围绕实际问题广泛查阅资料,获取自己有用的材料,从而提高了学生自觉使用资料的能力。
3.5数学建模有利于培养学生利用计算机及相应软件的能力
数学建模需要对复杂的实际问题和烦琐的数据进行处理。目前计算机和相应的各种软件包,不仅能够节省时间,得到直观形象的结果,有利于深入讨论,而且能够促使学生养成自觉应用最新科技成果的良好习惯。许多良好的计算机软件为求解模型或仿真模型提供了便利的平台。数学建模对培养学生使用计算机的能力是极其重要的。
3.6数学建模有利于锻炼学生的毅力、意志,还有利于培养学生的合作能力
数学建模活动能增强学生克服困难的信心、决心和勇气,同时还能培养学生的团结合作精神和交流、表达的能力;提高组织协调能力,培养其人文素质,丰富学生的知识结构。
数学建模的能力范文
一、阅读能力的培养
例如2003年宜昌市中考题中有这样一道题:
知识链接:GDP:是按市场价格计算的国内生产总值的简称.
百分点:是百分比中相当于1%的单位,它是用“和”或“差”分析不同时期百分比的一种表示形式,如,工业总产值今年的增长幅度为19%(也可以说成增长了19个百分点),去年的增长幅度为16%,今年比去年的增长幅度增加了(19-16=3)3个百分点而不能说成增加了3%.
国债投资:指国家发行长期建设国债的投资,它已成为经济稳定快速增长的助推器,据测算:每a元钱的国债投资带动的投资总额可以达到4a元至5a元.
问题思考:2000年国债投资带动GDP增长1.7个百分点,创造了120万个就业岗位;2002年国债投资1500亿元,创造了150万个就业岗位;从2000年到2002年的三年里,由于国债投资带动GDP增长而总共创造了400万个就业岗位,已知2000年与2002年由国债投资带动GDP增长百分点的和比2001年由国债投资带动GDP增长百分点的两倍还多0.1.
(1)若由国债投资带动的投资总额的40%将会转成劳务工资成为城乡居民的收入,请你估计2002年有国债投资带来的城乡居民收入的情况(数额范围).
(2)若每年GDP增长1.7个百分点就会创造120万个就业岗位,再每年增加一个百分点就创造k万个就业岗位,请你确定比例系数k的值,并测算2002年由国债投资带动GDP增长了多少个百分点?
在该问题中出现了许多学生比较陌生的名词如“GDP”、“百分点”、“国债投资“、劳务工资”、“就业岗位”等,在阅读时应抓住这些关键性名词及一些关键性内容.一般来说,应用性问题叙述较长,需要学生有一定的阅读能力,在阅读时,可以先通读,了解大致题意,在抓住重点进行复读,做好收集、整理数据的工作,为解题作好准备.除此以外,在平时教学中,教师也应注重新知识、新信息及社会人点问题的引入,让学生多了解与自己生活息息相关的知识和信息,这样对我们解决应用性问题是非常有帮助的.
二、建模能力的培养
建立数学模型是解决应用性问题中十分关键的一步,建立数学模型的过程,就是把错综复杂的实际问题简化、抽象为合理的数学问题,然后综合应用已有的知识来解决问题的过程.在初中的数学模型中常见的有以下三类,下面结合例题说明如何建立这三类数学模型:
(一)方程模型
例1:我国从1999年11月1日起开始对储蓄存款利息征收个人所得税,即征收存款所产生利息的20%,但教育储蓄和购买国库券暂不征收利息税.为了准备小颖6年后上大学的学费5000元,她的父母现在就参加了教育储蓄,下面有两种储蓄方式:(1)直接存一个6年期,(2)先存一个3年期,3年后将本息和自动转存一个3年期.(已知存1年、3年、6年的利率分别为2.25%、2.7%、2.88%)你认为哪种储蓄方式开始存入的本金较少?
分析:该问题是一个教育储蓄问题,解决问题之前,学生对本金、利息、利率、本金和等概念及其相应的关系应有一定的了解,例如本息和=本金+利息,利息=本金×利率×期数.由题意知道,不管用哪种方式储蓄,6年后的本金和为5000元,随着储蓄方式的不同,利率也不同,但都与本金有关,因此容易联想到方程模型,通过设出本金,按照两种不同储蓄方式计算其本金和为5000元,从而问题得以解决.
(二)函数模型
例2:为了加快教学手段的现代化,某校计划购置一批电脑,以知甲公司的报价为每台5800元,优惠条件是购买10台以上则从第11台开始按报价的70%计算,乙公司的报价也是每台5800元,但条件是为支援教育每台均按报价的85%计算,假如你是学校有关负责人,在电脑品牌、质量、售后房屋等完全相同的前提下,你如何选择,请说明理由.
分析:本问题是将你置于一个决策者的位置.在阅读理解题意的过程中要通过读题抓住关键内容,即两个公司报价相同,甲公司购买10台以上才有优惠,乙公司买多少台都有优惠,因此,购买10台以下应选择乙公司,当多于10台时应选择哪个公司。根据题意可以联想到函数模型,把两个公司的规定用函数关系表达再加以比较,在分析问题时还应注意分类讨论.
(三)几何模型
例3:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称为受台风影响.该城市是否会受到这次台风的影响?请说明理由.若会受到台风的影响,那么台风影响该城市的持续时间有多长?
分析:本题是一个有关气象灾害的应用性问题,在阅读理解的过程中可以边读题,边画图,并把条件标注在草图上,这样数形结合,有助于分析.由题可知达到或超过四级风力所影响的范围是距台风中心不超过(12-4)×20=160千米的范围内.城市A距台风中心不超过160千米时受台风影响,即以A为圆心,160千米为半径的圆内受影响.因此可以考虑台风中心距A城市最近的点的距离与台风影响的范围之间的大小关系就可以确定.求城市A受影响的时间,有已知台风中心移动的速度,只需求出移动的距离,通过观察图形,联想到勾股定理和垂径定理的数学模型,连接辅助线,使问题得解.
数学建模的能力范文篇7
【关键词】数学;实践模型;培养;创新能力
创新意识与实践能力是新大纲中最突出的特点,这就要求学生的数学学习不仅要在数学基础知识、基本技能和思维能力、运算能力、空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践,培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣.培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会:
1要重视各章前问题的教学,使学生明白建立数学模型的实际意义
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后。这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题――数学模型――数学抽象――简化原则――演算推理――现实原型问题的解――数学模型的解――反映性原则――返回解释列方程解应用题体现了在数学建模思维过程,要根据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想,且解题过程中重要的步骤是据题意列出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数字模型来解决问题。
3结合各章研究性课题的学习,培养学生洼立数学模型的能力,拓展数学建模形式的多样性与活泼性
初中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力.如“分期付款问题”、“向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题,设计了如下研究性旧题。问题。例:根据下表给出的数据资料,确定该国人口增长规律.预测该国2000年的人口数。
分析:这是一个确定人口增长模型的问题.为使问题简化,应做如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设.我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识,更培养了学生的数学建模能力和实践能力及创新意识,在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力。
4培养学生的其他能力,完善数学建模思想
数学建模的能力范文
(一)在数学概念的引入中渗透数学建模思想
数学的定义、概念是数学教学的重要内容。下面以定积分的定义为例,谈谈如何在数学概念的引入中渗透数学建模思想;设计如下教学过程:(1)实际问题:a.如何求曲边梯形的面积?b.如何求变速直线运动的路程?c.如何求直线运动时的变力做功?(2)引导学生利用“无限细分化整为零一局部以直代曲取近似一无限积累聚零为整取极限”的微积分的基本思想,得到问题a的表达式。(3)揭示如上定型模型的思维牵连与内在联系,概括总结提高为:不同的实际意义,但使用的方法相同,从求解步骤上看,都经分割一取近似一求和一取极限这四步,从表达式在数量关系上的共同特征,可抽象成数学模型:引出定积分的定义.(4)模型应用:回到实际问题中。数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题:a.一根带有质量的细棒长x米,设棒上任一点处的线密度为,求该细棒的质量m。b.在某时刻,设导线的电流强度为,求在时间间隔内流过导线横截面的电量。
(二)在应用问题教学中渗透数学建模思想
在讲解导数、微分、积分及其应用时,可编制“商品存储费用优化问题、批量进货的周转周期、最大收益原理、磁盘最大存储量、交通管理中的黄灯、红灯、绿灯亮的时间”等问题,都可用导数或微积分的数学方法进行求解。概率与统计的应用教学中,“医学检验的准确率问题”、“居民健康水平的调查与估测”、“临床诊断的准确性”、“不同的药物有效率的对比分析”等实际应用问题都可以用概率与统计的数学模型来解决。在线性代数的应用问题中,可以建立研究一个种群的基因变异,基因遗传等医学问题的模型,使数学知识直接应用于学生今后的专业中,有效的促进了学生学习高等数学的积极性,提高了数学的应用意识。建模过程给学生提供了联想、领悟、思维与表达的平台,促使学生的思维由此及彼、由浅入深的进行,随着模型的构造和问题的解决,可以让学生养成科学的态度,学会科学的方法,逐步形成创新思维,提高创性能力。
二、数学建模在高等数学教学中的作用
数学建模的能力范文篇9
关键词:数学模型数学建模问题解决
数学建模教学活动能否顺利地开展,一个重要的环节就是:教师应该对学生的能力有一个全面认识,正确评价和对待每一个学生。学生对于实际问题的解决中主要存在着一些问题,使得数学建模过程中学生很难将实际问题转化为数学模型。这里我们将学生解决实际问题的困难进行一下分析。
一、学生解决实际问题的信心不足
同纯数学问题相比,数学实际问题的文字叙述更加语言化,更贴近生活实际,有时题目可能比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对这样非形式化的材料,许多学生常感到茫然,不知从何下手,于是开始惧怕数学实际应用问题。具体表现在:
1、在信息的吸收过程中,受题中提供信息的次序、过多的干扰语句的影响,很多学生读不懂题目。
2、在信息的处理加工过程中,受学生自身阅读分析能力或者数学基础知识的影响,很多学生缺乏把握题目的整体数学结构的能力,无法理清各个数学对象间的复杂关系。
3、在信息的提炼过程中,受学生语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来,缺乏把实际问题转换为数学问题的翻译能力。
数学建模问题是用数学知识和数学方法解决实际生活中的各种各样的问题,对师生来说都是一种创造性的活动,涉及到各种心理活动。心理学研究表明良好的心理素质是创造性劳动的动力因素和基本条件,它主要包括以下几个要素:自觉的创新精神;强烈的好奇心和求知欲;积极、稳定的情感;顽强的毅力;独立的个性;强烈而明确的价值观;有效的组织知识。而我们很多学生由于不具备以上良好的心理品质,表现出解决实际问题的信心不足。
二、学生对实际问题中的名词术语或背景不熟悉
在实际问题中,常常用到其他领域内的名词术语,我们现在的学生,从小到大一直生活在学校,很少与外界联系,对这些名词术语不敏感或很陌生,从而不能读懂题意。比如:实际生活中的复利率、所得税、保险金额、折扣率、零存整取等,类似这样的概念必须弄清楚,才能用数学解决问题。
例如关于“艾滋病”的检验:关于艾滋病的检验是当今世界讨论的热点话题。分析艾滋病呈阳性者真正被感染的概率是多少?
本题涉及到学生不太熟悉的词语有:艾滋病检验阴性,检验阳性;艾滋病感染等。学生需咨询有关医护人员,查医学资料等熟悉有关词语。
建模简介:设A(受艾滋病感染)T(检验呈阳性)A(没有受艾滋病感染)T(检验呈阴性)。
模型假设:两个检验相互独立,没有技术错误。
收集资料:在真正受艾滋病感染者中检验呈阳性的概率为:P(T|A)=99.8%在确实不受艾滋病感染者中检验呈阴性的概率为:P(A|T)=99%
以德国为例,目前真正受感染的P(A)=0.1%
建模目的:在检验结果几乎100%正确判断艾滋病的感染前提下论证呈阳性者真正受感染的概率有多大?
利用Bayes定理建立数学概率模型:
≈9%
模型结果令人惊讶,也就是说11000阳性中只有1000(9%)人真正感染。这个例子反映出只有在实际问题涉及到的名词术语和背景材料分析透彻后,在教师帮助分析理解的基础上,学生建模活动才好开展。同时近几年高考出现的应用性问题,除了经济、环保等敏感话题外,也涉及到工业、医学等冷门问题。
例如:高考数学“冷压机”一题,已知一台冷压机共有4对减薄率为20%的轧辊,所有压辊的周长为1600mm,若第k对压辊有缺陷,每滚动一周在带钢压出一个疵点,在冷压机输出的带钢上,疵点的带钢上,疵点的间距为Lk,为了便于检修,计算L1,L2,L3。
建立模型:假设轧钢过程中,带钢宽度不变,且不考虑损耗,且在操作过程中,两疵点间的钢板体积始终相等,故可以建立一个等体积的几何模型问题。
模型分析:我们假设第3对压辊有缺陷,求L3,因此,我们将第3对压辊剪薄后的带钢上相邻两疵点为端点的一段“截割”下来,弄清该段带钢经过第4对压辊后有何变化,这也是突破该题目的关键。
模型求解:根据等体积几何模型有:1600宽厚度=L3宽厚度(1-20%),
解得L3=2000
据统计本题得分率不高,我分析学生可能没见过冷压机,对冷压机的性能和作用也不了解,对于“轧辊”、“减薄率”、“疵点”这样的名词不熟悉,所以题目也难以下手。因此数学建模教学要求学生要不断学习各方面的知识,不断丰富自己的思维,以便于学科之交流,学科之综合。
三、对实际问题中各种数据之间的数量关系分析不透彻
实际问题中有些数量关系不明确或比较复杂的问题,学生不知该把哪个数据作为思维的起点,感到无从下手,找不到解决问题的突破口。
例某公司拟为一企业承包新产品研制与开发任务,但为得到合同必须参加投标。已知投标的准备费用为4万元,中标的可能性是40%,如果不中标,准备费用得不到补偿。如果中标,可采用两种方法进行研制开发:方法1成功的可能性为80%,费用为26万元;方法2成功的可能性为50%,费用为60万元,如果合同中标,但未研制开发成功,这开发公司需赔偿10万元。请你决策:(1)是否参加投标;(2)若中标了,采用哪种方法研制开发?
在此问题中,涉及到的量有:投标准备费用,中标可能性,开发成功可能性,未研制成功的赔偿等各种方案的益损值。如何正确用这些已知量去决策方案许多学生一片茫然。
四、对实际问题转化为数学模型缺乏经验
可以用作解决实际问题的数学模型的形式很多,有函数模型,数列模型,不等式模型、概率模型、简单微积分模型等。但是,当遇到一个具体问题,选择什么样的数学模型,怎样分析解决问题,是学生感到很困难的一个环节。存在这种情况的主要原因是学生存在把普通语言转化为数学语言的障碍。数学语言主要是指数学文字语言、图形语言和符号语言,这也是数学区别于其他学科的一个显著特征。数学语言简练、抽象、严谨,甚至有些晦涩,如“函数y=f(x)”,形式简单,但很抽象。而实际应用问题明显特征就是文字叙述多,生活常识多,字母符号变量多,相关制约因素多,怎样将这种普通语言转化为数学语言对于数学模型能否顺利建成非常关键。
在排列组合中就有一类分装组合问题,经常以各种形式出现在各类考试中,而这些问题往往都可以通过构造一个模型来加以解决,我们举例说明。
问题的提出:将n个相同元素分装到m个不同盒中,有多少种装法。
模型的构建:将10个球分别装入3个不同的盒中,且每盒非空(或每盒至少一个),有多少种不同装法?
模型分析:将10个小球排成一排,在其两两之间的9个空档中任取2个空档华上竖线,这样就将10个小球分成3组。如图:
――
模型求解:将每个小球顺序装入三个盒子中,这画竖线的方法就等于题中所求的装法数,共有C29=36种装法。
问题的推广:借助此模型我们可以研究更多的相关问题。例如:
1、(要求至少有n个的问题)将20本书分给4个学生,要求每个学生至少得3本,有多少种不同分发。利用模型分析得:首先每人2本,然后把剩下的12本按上述画竖线的方法分给4个学生,共有C311=45种方法。
2、集合从A到B的映射f中,求满
的映射个数。利用模型分析有:本题等价于将5个相同的小球放在3个不同的盒子中,每盒可空的方法总数,故有C27=21个映射。
以上几个问题在形式有很大不同,但只要学生抓住问题的主干,成功的将普通语言转化为数学语言,设计好数学模型,题目的求解就会有更新,更清晰的思路。
参考文献:
1、郑毓信。简论数学课程改革的活动化、生活化与个性化取向.数学教学,2003(7)
数学建模的能力范文篇10
【关键词】数学建模;多样化;层次性
【中图分类号】G633.6【文献标识码】A【文章编号】1009-5071(2012)06-0069-01
1高中数学建模的教学现状
美国、德国、日本等发达国家都普遍重视数学建模教学,把数学建模活动从大学生向中学生转移已成为国际数学教育发展的一种趋势。
数学建模既是数学教学的一项重要内容和一种重要的数学学习方式,同时也是培养学生应用数学意识和数学素养的一种形式。在高中数学教学中,积极有效地、科学地开展数学建模活动,对高中学生掌握数学知识,形成应用数学的意识,提高应用数学能力有很好的作用。然而传统的数学课程标准还缺乏对数学建模的课时和内容进行科学的安排,也缺乏有效的教材和规定,这让许多一线教师在具体教学的实施过程中缺乏有效的标准和依据,从而影响规范化的教学过程。因此如何进行建模教学就成为了高中数学教学研究引以关注的热点问题之一。
2数学建模的基本含义
数学建模是从实际情境中抽象出数学问题,求解数学模型,再回到现实中进行检验,必要时修改模型使之更切合实际的过程。数学建模是运用数学思想、方法和知识解决实际问题的过程,强调与社会、自然和实际生活的联系,推动学生关心现实、了解社会、解读自然、体验人生。数学建模能培养学生进行应用数学的分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献及自学的能力,组织、协调、管理的能力;创造、想象、联想和洞察的能力。
3关于高中数学建模教学的几点建议
数学建模作为新课程标准规定的一种数学教学和学习方式,它的有效实施和应用,有赖于学校、数学教师和其他有识之士的共同努力。笔者结合自己在高中数学建模教学中的实践,从建模教学的形式、内容、层次和学生的合作能力培养四个方面提出如下建议:
3.1数学建模的教学形式要多样化。目前比较常见的形式主要有三种:一是结合正常的课堂教学,在部分环节上切入数学模型的内容。例如在高中数学教学中讲解关于椭圆的内容时,教师就可以在这个部分切入数学建模的内容,在太阳系中有的行星围绕太阳的运行轨道就是一个椭圆,并且太阳恰好在其中的一个焦点的位置上,引导学生查阅相关资料,并建立行星轨道的椭圆方程。二是开展以数学建模为主题的单独的教学环节,可以引导学生从生活中发现问题,并通过建立数学模型,解决问题。三是在有条件的情况下开设数学建模的选修课。这三种形式在实际数学教学中都可结合实际有效使用。
3.2数学建模的教学要选择合适的建模问题。进行建模教学活动的内容和方法要符合学生的年龄特征、智力发展水平和心理特征,适合学生的认知水平,既要让学生理解内容、接受方法,又要使学生通过参加活动后,认知水平达到一定程度的新的飞跃。不切实际的问题,不适合学生的认知水平的建模活动,不但达不到目的,而且也会导致学生的兴趣和爱好受到很大挫伤。
数学建模的能力范文1篇11
数学建模课程和数学建模竞赛作为数学教学的一个组成部分,在我院已经进行了四年。面对科学技术飞速发展的新形势,面对知识经济时代对人才的要求,怎样使数学建模在人才培养中发挥更大的作用,需要我们不断探索和实践。
一、数学建模和数学建模竞赛
模型是实物、过程的表示形式,是人们认识事物的概念框架。数学模型是对所研究对象的数学模拟,是进行科学研究的一个重要方法。数学建模就是通过对实际问题的分析,通过抽象和简化,明确实际问题中最重要的变量和参数,通过系统的变化机理或实验观测数据建立起这些变量和参数间的量化关系,再用精确或近似的数学方法求解,然后把数学的结果和实际问题进行比较,用实际数据验证模型的合理性,对模型进行修改和完善,最后将模型用于解决实际问题的过程中去。为了推动数学建模的进一步发展,吸引更多的学生参与数学活动,从1994年起,全国大学生数学建模竞赛成为国家教育部组织的全国性大学生四大竞赛之一。目前,大学生数学建模竞赛已经成为我国规模最大的大学生课外科技竞赛活动。数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛。数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技活动,开拓知识面,培养创新精神和合作意识,推动大学数学教学体系、教学内容和方法的改革”。数学建模课程和竞赛的开展把学生学过的知识和周围的现实世界联系起来,通过教学与竞赛,可以培养和提高学生的洞察能力、数学语言翻译能力、综合应用分析能力、联想能力及各种当代科技最新成果的使用能力。数学建模具有联系实际、领域广泛、案例丰富的特点,在教学和竞赛中可以根据问题的需要引导学习和接受不断涌现的新概念、新思想和新方法,培养学生将实际问题抽象为数学模型的能力,培养学生快速反应能力和自我开拓能力。
二、烟台大学文经学院的数学建模工作
(一)现状与成绩
从小学到大学,数学课程伴随着一个理工科大学生走过了人生最珍贵的十几年,其时间之长,负担之重,是其他任何课程都不能相比的。然而,却有不少学生带着学数学到底有什么用的困惑,在沉重的学习负担下感到数学既难懂又枯燥,学习兴趣日下。于是,一方面是社会对与计算机技术有着密切联系的应用数学的需要日益增长,另一方面学了很多书本知识的大学生运用数学工具分析解决实际问题的能力远不能适应从事专业工作的需要。正是为了解决这个矛盾,根据国内外数学教学发展的动态,我们先后在烟台大学文经学院开设了数学建模实验课和全校数学建模选修课。自2008年起,我们开始独立组织学生参加全国大学生数学建模竞赛。数学建模竞赛是数学建模实验课和数学建模选修课的继续和深入,也是对我们数学建模课程质量和效果的直接检验。我们从参加数学建模课程学习的学生中或从参加学校数学建模竞赛的学生中选拔优秀的学生进行培训,组队参加竞赛。通过培训和竞赛,学生的自学能力、自我管理能力、创新能力、拼搏精神、合作精神大大提高。通过几年的努力,我们取得了以下成绩:
1.培养了一批优秀人才。参加过数学建模实验课和选修课学习的学生,以及参加过数学建模培训和竞赛的学生,在自学能力、创新能力、分析和解决实际问题的能力、写作能力、拼搏精神、合作精神等诸方面都有了长足的进步,数学建模所培养的素质和能力将使他们受益终生。
2.在竞赛中取得了优异成绩。自2008年起,烟台大学文经学院连续4年独立组队参加全国大学生数学建模竞赛,共荣获国家二等奖2项,省一等奖12项,省二等奖35项,省三等奖16项。每年均获得全国大学生数学建模竞赛、全国大学生电子设计竞赛山东赛区优秀组织工作奖。
3.建立了数学建模实验室。我们在2010年建立了数学建模实验室,为我校数学建模实验课提供了良好的实验基地。每年的全国大学生数学建模竞赛,我校学生就在此实验室进行上机实验。为把实验引入数学教学、为更大范围的数学教学改革起到了良好的示范作用。④积累了许多资料。我们收集了国内外有关数学建模和数学实验的许多教材、实验指导书及软件,这些资料为进一步的工作提供了良好的基础。⑤造就了一批高水平、有奉献精神、勇于探索教学改革新思路的师资队伍。通过数学建模活动促进了教师水平的提高和知识面得扩大,也为数学专业人才培养和整个数学教学改革探索了一些新思路、新方法。
(二)思考与改革
在数学建模教学过程中,我们一直在反复探讨怎样更有效地提高学生的创新能力这一问题。我们认为,知识的获取是一个特殊的认识过程,本质上是一个创造性的过程。很多重要知识是通过“体悟”、“构建”、“再创造”等创造性认识过程而获得的。知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单的获取结果,强调的是创造性解决问题的方法和养成不断探索的精神。在数学建模教学的实践中,我们从强调学生的主体地位和培养学生的创造性学习能力出发,尝试了下面两种教学模式:
1.探索讨论。按照人们探索未知世界、获取新知识的途径,通过发现问题、提出问题、分析问题、综合已有的知识去创造性地解决问题等步骤去获取和掌握新知识。这种方法突出学生自己探索新知识,注重学生的独立钻研。这种模式通过创造一种环境、提出一些问题、学生定向自学、师生共同研讨等步骤实现。在这一学习过程中,教师通过情景和问题引导,激发学生学习讨论。该方法成败的关键是要有合适的问题。
2.小组活动与大型作业。这是根据知识经济时代人们只有通过合作和交流才能更多、更快、更好地获取知识这一特点进行学习的方式。教师将学生分成若干小组并指定一些问题,让学生阅读相应的参考文献,相互讨论,形成解决问题的方案,通过计算给出结果,并写出完整的报告。这样可以充分发挥每个学生的特长,如计算、分析、编程、写作等,使他们养成与别人合作工作的良好习惯。在具体的教学过程中,根据不同部分内容和学生的情况,可以采取不同的教学方式。在数学建模课程的教学中通过这些训练使学生将实际问题和数学联系起来,从一些观察到的现象中归纳数量规律,并运用数学的方法或计算机予以证明。这种创造性的学习方法在学生应用数学的意识和创新能力培养方面起到了积极的作用,参加过数学建模课程学习和参加过数学建模竞赛的同学的数学素质有了较大的提高,为进一步发展打好了基础。
(三)对今后工作的建议
通过几年来的教学实践和兄弟院校的经验可以看出,数学建模活动对教学改革和人才培养有着十分重要的作用,今后我们可以进行以下几发面的工作,以便使数学建模工作更上一层楼。
1.在数学建模中加强创新能力的培养。创新能力主要是指利用已有的知识经验,在个性品质的支持下,新颖而独特地提出问题、解决问题,并由此产生出有价值的新思想、新方法、新成果。创新能力是人的各种能力的综合和最高形式。但创新能力不是一门课程,它无法通过讲授来培养。创新能力是通过教学活动来培养的,是可以通过各门数学知识的载体来开发的。数学建模实验和数学建模竞赛就是培养创新能力的一个极好的载体,我们应该充分发挥它们在创新能力培养中的作用。我们已经成立了数学建模协会,可以通过它们组织一些课外建模小组,引导学生了解一些研究领域的动向,从中找出合适的建模问题,作为一个长期的研究课题,让学生从事一些真正的科研工作。
2.扩大受益面,开设数学实验课。由于数学建模对学生的基础知识和师资有一定的要求,目前还无法推广到全校,但数学实验课可与高等数学有机地结合,使学生大面积受益。我们可以在学校条件许可的情况下,对不同层次的学生开设认知、计算、建模三种类型的实验。认知就是让学生在计算机的帮助下加深对数学概念的理解,也可以猜测一些结论,通过计算机加以验证。计算就是引导学生利用计算机强大的计算功能去完成数值计算、数据处理、计算机模拟等任务,得到一些问题的近似解。建模就是引导学生解决一些简单的实际问题。
3.让数学建模的思想渗透到各门数学课程中。在大学教育中最理想的数学建模教学就是把它渗透到各门数学课程中和专业课中。在每一门课中设计两三个较精彩的建模案例,四年下来,学生就有了很多典型的例子,其创新能力就会有较大的提高。
4.将数学建模竞赛作为日常教学工作对待。全国大学生数学建模竞赛每年一次,为了提高我校的竞赛成绩,应该将其纳入正常的教学轨道,不应该是每年报名、选拔、竞赛,而应该提前准备,做到水到渠成。
三、结语
数学建模和数学教学改革是一项长期的艰苦工作,需要学校各方面有配套的措施,现在数学教师的教学负担又非常重,这使得我们的教学改革面临更大的困难,致力于数学建模的教师需要更大的毅力和勇气。我们的工作仅仅是一个开端,还处于探索阶段,对于这门课程的期望不宜太高,特别是对没有学过数学建模课的学生,只要通过一些实验让他们形成自觉学习和应用数学的意识和能力,以后能主动想到利用数学和计算机结合去解决实际问题,就是我们的成功。
参考文献:
[1]姜启源,谢金星,叶俊.数学模型第3版[M].北京:高等教育出版社,2004.
数学建模的能力范文篇12
【关键词】数学建模;数学实验;创新能力;微课;翻转课堂
随着大学生数学建模竞赛的不断开展,各高校也越来越重视数学建模和数学实验课程的教学工作,并通过围绕该赛事组织本校的预赛等工作,大力推广数学建模的参与面.分析历年来大学生数学建模竞赛赛题,可以发现近年的赛题有如下一些特点:题目的难度逐年升高,对数学知识的要求超出书本范围;问题越来越接近解决生活中遇到的实际问题,题目应用性很强;题目中常常会出现大数据,这些数据的处理和合理应用直接影响题目的求解;题目经常是命题专家的课题的一部分或简化,要求有一定的专业背景知识;解决问题的手段与计算机的联系也越来越密切,数学软件的使用趋于普遍,对学生的计算机能力要求越来越高;问题的综合性要求较高,对学生的数学应用能力和创新能力也要求更高.
一、当前数学建模和数学实验课程的特点及不足
目前已有的数学建模和数学实验的教学工作,主要是针对典型的教学案例,讲授如何建立适当的数学模型的理论知识,以及分析问题和解决问题的过程.教学中,教师还是以电子课件的课堂讲授为主,学生的实验活动主要是在课外完成,练习作业也基本以较为简单的题目为主,学生难以获得系统的、全面的训练.因此,数学建模与数学实验课程传统的教学内容、教学手段、教学方法与近年数学建模竞赛和学生对竞赛辅导的要求的距离较大.学生在面对大学生数学建模竞赛的真题时,普遍感觉题目较难,难以下手;很多学生在建模的过程中有一些好的想法,但是由于数学软件基础较弱,难以实现自己的算法.同时,由于这两门课程通常分期开设,加之学时有限,使学生很难把两门课程有效地联系起来.
二、数学建模与数学实验课程改革内容
(一)教学形式多样化
1.高等代数和数学分析等数学主干课程的教学中,要融入数学建模和笛实验的内容,增加一些简单建模的例题,强调运用数学知识解决实际问题的教学.
2.我校每年举办多次数学建模系列讲座,对更多的学生进行数学建模启蒙教育,宣传数学建模的基本思想,激发了学生们对数学建模的兴趣.
3.同时,基于微课的翻转课堂模式,开设数学实验和数学建模公共选修课,系统介绍数学建模的基本内容和数学软件的功能,培养学生的数学建模能力.
4.每年组织开展1次校内数学建模竞赛、2次建模夏令营,选拔优秀学生参加全国大学生数学建模竞赛和美国大学生数学建模竞赛.2016年获得美赛二等奖3项、国赛一等奖1项、国赛二等奖6项、国赛省一等奖11项.目前我校数学建模成绩在吉林市名列前茅.
5.从数学建模和数学实验出发,为学生开设创新实验,建立数学建模工作室,鼓励学生申请数学建模的大学生创新项目,培养优秀学生的数学建模的素养和能力.
(二)教学内容多样化
1.结合课程的特点,在数学主干课程中穿插具有建模思想的例题.例如,在常微分方程课程中,增加对汽车碰撞模型的介绍.这类教学主要是让学生了解和体会数学建模的基本思想和基本概念,激发学生应用数学知识解决问题的兴趣.
2.数学建模讲座可以选取某种模型,使学生全面理解模型的适用范围、典型特征、建模及求解过程.通过对该模型比较深入的理解,能了解数学建模的全过程,能举一反三.
3.数学建模和数学实验的选修课可以比较系统地讲授常用的数学模型的基本知识,介绍一种数学软件的使用.通过该课程的学习,使学生能比较系统地了解数学建模的基本过程,掌握数学建模的基本技能,能运用数学模型解决较为简单的实际问题.
(三)将数学建模与数学实验课程合并
将数学理论知识、数学建模的思维方法与数学实验融为一体,充分体现了数学的应用价值.
1.学生在学习各种典型案例的同时,可以利用数学软件及时开展实验.这样既弥补了单独开设的缺点,又在一定程度上节省了课时,效果也有了明显改观.
2.合并后的课程强调淡化理论,特别注重学生实践动手能力的培养.
3.教学方式采用的是分专题的案例教学法,比如,在数据处理专题中,会介绍数据拟合、插值、线性回归和非线性回归分析的相关案例以及实验工具.
4.课程宗旨就是让学生通过课程学习,在分析问题,应用数学方法原理建立数学模型,并综合应用计算机技术解决实际问题的能力培养上有质的飞跃.
(四)考核方式多样化
本着以学生为主体,以能力考查为中心,以提高教学质量为根本的理念,我们对课程的考核方式进行了改革,具体的成绩评定方案如下:
1.平时成绩占最终成绩的10%;
2.实验课考核占最终成绩的30%;
3.实践论文(模型+求解+排版)占最终成绩的60%.
总体看,新的考核方式更看重实践环节的考核.这里的实践有两层含义:一是学数学,用数学,尝试解决一些生活实际问题;二是上机实践,要求熟练掌握各种基本的数学软件工具,并能辅助学生对实际问题进行探究和求解.