电气工程及其自动化的特点范文篇1

关键词:电气工程;自动化;设计;应用

如今,电力企业规模逐渐扩大,电气工程及其自动化技术成为企业发展的重点。通过对企业实际发展特点进行分析,将现代自动化技术进行整合,采用恰当的手术进行设计,目的主要是为了更好地控制设备正常运作,为电气工程的建设打下坚实的基础。需要注意的是,相关技术人员需要对自动化控制工艺进行合理规划,不断完善自动化操作,使其能高速运行,达到理想的建设效果。自动化技术的应用,进一步优化了电气工程的整理运作模式,是电力企业发展的必然趋势,在为人们提供更多电气产品的同时,为企业创造更多的经济效益,有利于企业长期、稳定的发展。

1电气工程及其自动化概述

1.1电气工程及其自动化定义

电气工程自动化融入了我国现代的各种技术手段,如计算机技术、电子信息技术等,涵盖了机电一体化多个学科的知识,是新时代下的产物。将电气工程及其自动化技术应用于工业的发展中,可节省更多人力、物力资源,减少成本,提高企业整体运作效率和质量,成为企业发展的核心内容。基于此,需要对电气工程及其自动化技术进行深入分析,对各科知识进行整合,在实际应用中,不断发现问题并采取相应的措施来解决,确保其真正发挥出应有的作用[1]。

1.2电气工程及其自动化特点

电气工程及其自动化课程具有较强的综合性,包含电气电力技术、计算机技术、机械自动化等多种技术类型,采取一定的方式将其巧妙融合,形成有机的整体。为此,包容性也是电气工程及其自动化的显著特点,将其应用于我国各个领域中,可减少企业在资金上不必要的浪费,降低生产成本,真正实现经济利益最大化的目标。

2电气工程及其自动化技术设计

2.1电气工程及其自动化技术分类

将电气工程及其自动化进行分类,主要存在状态检修和管控一体化两种形式。管控一体化技术的应用,主要表现在信息数据处理方面,采用恰当的方式,对数据信息进行搜集、整理并分析,可确保信息的完整性、集成性,便于企业领导者对数据更好的使用,制定后期发展目标,下达正确的决策。状态检修技术主要用于设备抢修过程中,通过对设备运行数据进行分析,可准确判断出设备存在的故障问题,以便得到及时的处理,尽可能消除设备运行中存在的隐患风险,有利于企业整体运行的稳定性和安全性[2]。

2.2电气工程及其自动化技术的设计原则

电气工程及其自动化技术的设计是一项重要工作内容,在此期间,相关技术人员需充分考虑各方面存在的问题,使用硬件、软件等配置设施,根据企业实际发展特点,制定出完善的设计方案,确保其具有较高的可行性价值。以设计原稿中的内容为依据,对现有的工作进行改进并指派相关工作人员落实。其中,在对硬件设施进行设计时,应尽可能的满足电气工程及其自动化技术应用所提出的要求,把控每一个细节。

3电气工程及其自动化技术的应用策略

3.1住宅行业的应用

近年来,电气工程及其自动化技术已经得到了较为广泛的应用,主要表现在住宅行业、工业行业以及电力系统中。如今,人们的生活质量不断提高,对住宅方面也提出了更高的要求。在现代房屋建设中,不仅要注重房屋的质量,更多人将关注点放在了房屋的功能上。智能化楼宇、各单元的监测、控制等多方面均得到了较好的应用,在提高人们住房安全的同时,也降低了漏电事件的发生概率,为人们提供更舒适的住房服务,彰显出了更大的应用价值。

3.2工业行业的应用

伴随着我国经济水平的提高,在工业方面也取得了较大的成果。现如今,工厂规模不断扩大,为了提高企业自身的竞争力,可引用电气工程及其自动化技术,减少企业在人力、物力资源上的浪费,为企业创造更多经济效益。在工业领域实际应用过程中,主要以感应器为主,可对部分区域来进行控制,从而实现自动化功能[3-4]。在此情况下,使用远程终端的方式,对各个部件线路全面监测,采用正确的操作方式,对各个单元模块进行控制,大大降低了控制人员的工作压力,应用效果更加显著。需要注意的是,企业需定期对控制人员进行培训,确保其操作上的规范性,减少人为失误,为整个控制系统的稳定运行奠定良好的基础。

电气工程及其自动化的特点范文

关键词:电气工程及其自动化专业简介发展

中图分类号:F407文献标识码:A

正是因为电气工程的发展,才有今天庞大的电力工业,人类才不可逆转地进入伟大的电气化时代。人类发展到任何时候也离不开能源,而能源是人类永恒的研究对象,而电能是利用最为方便的能源形式,以电能为研究对象的电气工程及其自动化专业有着十分强大的生命力。

一、专业内容介绍

电气工程及其自动化涉及电力电子技术、计算机技术、电机电器技术信息与网络控制技术、机电一体化技术等诸多领域,是一门综合性较强的学科。电气工程及其自动化的专业范围主要包括电工基础理论、电气装备制造和应用、电力系统运行和控制三个部分。电气工程及其自动化专业的基础性也决定了它具有很强的学科交叉和融合能力。

培养要求:该专业培养能够从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发、经济管理以及电子与计算机技术应用等领域的“高素质、强能力、应用型”高级工程技术人才。学生主要学习电工技术、电子技术、信息控制、计算机技术等方面较宽广的工程技术基础和一定的专业知识。本专业主要特点是强弱电结合、电工技术与电子技术相结合、软件与硬件结合、元件与系统结合,学生受到电工电子、信息控制及计算机技术方面的基本训练,具有解决电气工程技术分析与控制技术问题的基本能力。

主干学科:电气工程、计算机科学与技术、控制科学与工程。

主要课程:电路原理、电子技术基础、电机学、电力电子技术、电力拖动与控制、计算机技术(语言、软件基础、硬件基础、单片机等)、信号与系统、控制理论等。

电气工程一般分为电力系统和应用电子(也就是电力电子)。

二、专业发展前景

电气工程学科涉及工业、农业、交通运输、国防及人民生活等各领域,与电子科学与技术、计算机科学与技术、控制科学与工程、信息与通信工程、环境科学与工程、生物医学等学科交叉渗透,拓宽了电气工程学科的内涵与外延。随着科技的发展,电气工程的学科结构、研究领域、技术领域发生了很大变化。电气工程愈来愈多地应用信息技术、计算机技术、通信技术、电力电子技术和自动化技术,电气工程及其自动化专业内涵也发展演变为强电和弱电结合、电工技术和电子技术结合、软件和硬件结合、元件和系统结合。例如“电气工程”和“电子技术”以及“控制科学”交叉融合产生了“电力电子技术”;“电气工程”与“材料科学”的交叉融合产生了“超导电工技术”和“纳米电工技术”;“电气工程”与“机械工程”及“计算机学科”的交叉融合产生了“机电一体化”新学科,已形成了以“机械”为主体、电气工程和计算机控制为技术核心、“机械+电气+计算机”的有机融合,“机电一体化”技术实际上就是电气自动化技术高度发展的一个阶段的必然产物,它是电气自动化领域中机械技术与电子技术有机结合的一种高新技术,也可以说隶属于“电气工程及其自动化”的专业范畴。随着科学技术的高速发展,电力成为国民经济中重要的生产资料及人民生活中必不可少的生活资料。当今,电气化水平的提高使得各种经济活动都离不开电(用油的交通工具除外),我国电能占终端能源消费的比重已接近20%,高于世界平均水平。我国的电气化水平也决定了电力数据具有大范围的覆盖性。有专家表示,电力工业的发展方向是智能电力系统,或者是坚强智能电网或者是智能电网。智能电力系统是实现电力工业发展价值特征的最有效途径,也是现代电力工业的发展方向,发展智能电力系统能够确保更安全、更经济、更绿色、更和谐,同时智能电力系统是一个广义的坚强智能电网,能够有效地破解未来发展的挑战。

三、专业应用与就业方向

电气工程及其自动化的几个方向:

1.电力系统方向

电力系统专业方向是电气工程及其自动化专业中最具有优势和特色的专业方向,为部级一类特色专业的重要组成部分,主要培养从事高压电器设备设计、制造和运行维护等方面的高级工程技术人才。该专业方向依托电气工程一级博士学位授权学科和博士后科研流动站,覆盖了高电压与绝缘技术和电介质工程2个二级博士、硕士学位授权学科,电力系统为部级重点学科。同时,该专业方向设置高电压绝缘技术和电气绝缘与电缆两个专业模块。

就业方向:可在电力设备制造行业从事高电压设备的设计、开发、生产和管理等工作,可在电力系统从事高压设备的运行维护方面的技术工作和管理工作,就业于电业局、供电局、发电厂,也可在科研院所从事教学和科研工作。

2.电气技术方向

电气技术是电气工程及其自动化专业的一个方向。该专业是重点专业,具有电气工程一级学位博士学位授予权,电气工程领域拥有博士后流动站,在高电压与绝缘技术、电机与电气和电力电子与电力信息处理学科具有工学硕士授予权。

就业方向:电气技术方向主要培养电气测量与控制技术方面的高级电气工程技术人才,从事电参量和磁参信息获取与处理技术研究工作,以及电气技术自动化控制领域的装置与系统的设计开发与应用研究工作。学位获得后,可在电气工程技术领域的企业、承担理论研究、技术开发、运行管理等技术工作,也可以在研究机构和高等学校从事研究与教学工作。

3.电机与电气方向

电机与电气学科在一体化电机的理论与技术方面,主要研究了步进电机、无刷直流电机、感应同步器等。在电机的电力电子驱动技术方面,研究了电动车、电机驱动系统的结构与控制策略,变频电源谐波抑制技术。在高环境、高可靠电机与电器方面,研究了高环境电器可靠性理论与技术航天电器的理论与技术、卫星姿控用飞轮的可靠性设计。在新型电磁机构的理论与应用方面,研究了特种电机、磁性流体密封、旋转轴的在线平衡、电磁成型技术。其中在步进电机和无刷直流电机等特种电机及航天电器方面具有较大的影响。

就业方向:可在电力、电子、通信、机械、交通、建筑等行业从事电子领域的研究、设计、开发、运行及管理等工作,也可以在研究机构和高等学校从事研究与教学工作。

4.应用电子技术方向

应用电子技术方向是电气工程及其自动化专业的一个特色专业方向,特点是电气与电子兼备,电力电子与信息电子相融。培养从事电气工程、电子技术、电力电子技术、自动控制、信号变换与处理等方面工作的宽口径、复合型高级工程技术人才。

就业方向:可在电力、电子、通信、机械、交通、建筑等行业从事应用电子技术领域的研究、设计、开发、运行及管理等工作,也可以在研究机构和高等学校从事研究与教学工作。

结束语

总之,随着我国经济的飞速发展,计算机科学与技术也在不断进步,通过计算机软硬件控制,实现电气化已成为现实。计算机模拟操作,更为现实电力系统运行状况提供了方便快捷的监视和判断功能。PC和网络技术已经在工商管理中得到普及。在电气自动化领域,基于PC的人机界面普遍被采用,并以其直观性、灵活性和易于集成等特点备受用户青睐。选择了电气工程及其自动化专业,就应该立志成为一位优秀的电气工程人才,让我国的电力工业不落后于国际先进水平,推动社会主义现代工业化进程。

参考文献:

[1]巫云飞,陈小松.探讨电气的自动化在电气工程中的融合运用[J].大观周刊,2011(38)

[2]张礼崇,郜祥,王焱,李兴。电气自动化工程控制系统的现状及其发展趋势[J]。技术与市场,2012,(1).

[3]朱仲海.分析电气工程及其自动化的建设与发展[J].城市建设理论研究,2012.(12).

电气工程及其自动化的特点范文

智能化技术最早是在上世纪五十年代提出的,随着时代的发展与科技的进步,智能化技术也在不断的发展与完善当中。直至今日,智能化技术的理论基础与实践经验也逐渐扩展到多个学科,包括语言学、医学、生物学以及信息学等学科。但是,同时也可以发现智能化技术并没有十分的完善,在科技发展迅猛的新时期,智能化技术也逐渐向只能简单的方向发展。而这就要求相关设计人员在进行智能化设计的时候,要根据合理的科学数据进行完善。而另一方面,随着经济的发展,电气工程也越来越被人们需要与重视,也就意味着电气工程也逐渐被引进更多的数据信息,将其设计为更加符合人们需求的设备,拥有其独特的作用,从而使人们操作起来更加安全便利。在电气工程中智能化技术的应用方向主要包括了信息的收集、处理以及电气应用等方面,通过实践研究发现,智能化技术在电气工程及自动化领域也拥有很强的实用性与适应性,因此,电气工程机器自动化的智能技术的应用也会不断的得到推广与发展,在一定程度上提高自动化管理与控制的质量,降低电气工程工作人员的工作量,进而促进电气行业的发展与进步。

2智能化技术在电气工程自动化控制中的特点及重要性

2.1对电气系统进行调整与控制

变得更为便利智能化技术在电气工程自动化控制中的应用特点之一就是可以通过鲁棒性变化、反应的时间等实现对电气系统的调整与控制,以便于更加有效的提高电气工程自动化的工作性能,保障自动化控制的顺利进行。当然,这也就意味着无论在任何情况下智能化技术都比传统的自动化控制器的调控能力更加方便有效,也更适合将智能化技术应用于电气工程及自动化的实际工作中,从而更加有效的保障电气系统的正常运作,推动电气工程的发展。

2.2可以适当的避免进行建立控制模型

在传统的电气工程自动化控制过程中,不仅需要控制器的控制,还要事先建立控制模型才能够真正实现系统的控制。而由于被控制的电气工程自动化系统比较复杂,在实际操作过程中没有办法保证能够达到精确的效果。因此,在进行模型的建立过程中可能会出现很多无法预料的问题,影响电气工程自动化控制管理的效果。而智能化技术的提出则在很大程度上解决了这一难题,不仅有效的避免了建立控制模型,使其工作效率得到了很大的提升,也从根本上减少了很多比可控因素的出现,从而在一定程度上加强了自动化控制器的精密系数,有效推动电气工程的发展。

2.3在进行数据处理时具有较高的一致性

在电气工程中,智能控制器对所有的输入数据进行处理,同时进行快速而精确的判断。而由于被控制的对象具有很强的变换性,可能会对控制器造成不同程度的影响。而对于多样化的控制对象,即使应用了智能化技术,也很难彻底解决自动化控制中的问题。因此,在电气工程自动化控制过程中,需要进一步对智能控制的一些缺陷进行深入研究,以便于有效的寻找出合适的解决办法,促进电气工程及其自动化的智能应用技术,推动我国经济发展。

2.4强化电力运行系统的整体控制能力

在按期工程以及其自动化控制过程中,通过智能化技术的应用,可以在很大程度上对工程的数据以及电力设备进行有效的监控,从而保证这个电气工程自动化系统的正常运行。除此之外,在对相关的电力设备进行调控的过程中,还可以对系统中存在的安全隐患进行预警并及时进行排除,提高电力运行系统的稳定性。同时,还可以利用智能化技术的特点对电气工程进行远程控制,提高电力运行系统的控制能力。

3智能化技术在电气工程自动化控制中的具体应用

3.1PLC技术的应用

随着我国科学技术的发展,PLC也在逐渐代替机电控制器在生产中的作用。而为了满足电气工程的电力运行要求,借助PLC在协调电力生产方面的优势,可以有效的对电气工程及其自动化进行更好的控制。PLC软继电器在一定程度上取代了电气工程系统中实物元件的应用,不仅能够实现供电系统自动切换的功能,还可以适当提升电力系统的安全性以及稳定性,增加PLC技术应用的广泛性,同时能够实现电气工程及其自动化控制的有效性。

3.2故障诊断技术的应用

在进行电气系统的运行过程中,往往会由于各种原因导致电气设备出现不同的故障。而随着智能化技术的应用与发展,我们可以通过设备故障出现前的预兆进行判断,从而有效的保障系统的正常运行。在电气工程及自动化控制系统中,相关的研究人员针对变压器这一重要的设备进行了合理的保护与维修,使其的寿命得到有效的延长,但是还是不能够完全避免设备故障的出现。因此,这就要求我么咋进行故障分析诊断的过程中,要合理的利用智能化技术对设备进行诊断,从而实现快速有效的确定设备故障的原因及故障范围,最终将故障消除。通过对电气工程及其自动化控制系统进行故障分析与诊断,在一定程度上保证了电气系统运行的安全性,从而避免严重事故的发生,推动社会经济的发展与进步。

3.3优化设计技术的应用

电气工程自动化控制主要就是针对电气设备进行设计研究,在一定程度上对其进行优化设计,保障电气工程的快速稳定的发展。因此,就要求相关的设计工作人员要十分熟悉电气工程相关的理论知识,同时还要具备丰富的设计研究经验基础,才能保证电气工程及其自动化的设计能够更加具有科学性与创造性。在进行电气工程及其自动化的优化设计的实际应用中,最为典型的就是遗传算法的应用,这种设计理念将电气系统中的多项功能集中到同一处理器上进行处理,因此,就导致处理器的运行负担加重。而智能化技术的应用,则可以实现远程监控,在一定程度上可以减少材料之处,降低电气工程成本,实现监控系统通信共享,引进先进的智能设备,同时还有效的提高了工程的实用性以及安全性,从而促进智能化技术的快速发展与推广,提高电气工程及其自动化的控制质量。

4结束语