布热比耶(Bouguer-Brewer inequapty)是一个数学定理,其中证明了一个多项式的欧拉函数与其出现频率之和之间的关系。这个定理是由卢卡·布热(Luka Bouguer)和托马斯·布鲁威尔(Thomas Brewer)在19世纪末发现的。
下面是一些关于布热比耶不等式的英文例句及其中文翻译:
"The Bouguer-Brewer inequapty states that the sum of the frequencies of the roots of a polynomial is greater than the sum of the roots of its Euler function."
(布热比耶不等式指出,一个多项式的根的频率之和大于其欧拉函数的根之和。)
"The Bouguer-Brewer inequapty is a useful tool for analyzing the distribution of roots of polynomials."
(布热比耶不等式是分析多项式根分布的有用工具。)
"The proof of the Bouguer-Brewer inequapty repes on the properties of Euler functions and the roots of polynomials."
(布热比耶不等式的证明依赖于欧拉函数的性质和多项式的根。)
下面是一些关于布热比耶不等式的英文例句及其中文翻译:
"The Bouguer-Brewer inequapty states that the sum of the frequencies of the roots of a polynomial is greater than the sum of the roots of its Euler function."
(布热比耶不等式指出,一个多项式的根的频率之和大于其欧拉函数的根之和。)
"The Bouguer-Brewer inequapty is a useful tool for analyzing the distribution of roots of polynomials."
(布热比耶不等式是分析多项式根分布的有用工具。)
"The proof of the Bouguer-Brewer inequapty repes on the properties of Euler functions and the roots of polynomials."
(布热比耶不等式的证明依赖于欧拉函数的性质和多项式的根。)