轨道交通工程范文

1铁路工程与城市轨道交通工程造价编制的区别与联系

1.1造价特点的区别与联系铁路工程比城市轨道工程线路更长,规模也更大。而城市轨道工程常处于市区,线路经过市区内的建筑物和线路、管道比较密集,有大量的征地拆迁工程,同时城市轨道工程的施工往往更注重于周围的建筑保护,因而增多了支护措施的费用,既要能满足道路运输的要求,又要协调好城市的绿化和市貌,满足居民的生活条件,以及城市轨道工程使用的材料、借土等运距较远,人工费标准较高,从这些方面来说,提高了城市轨道工程每公里造价成本和设计的标准。同时,城市轨道交通工程中的现代有轨电车、轻轨、市域轨道交通工程的每公里造价又同铁路工程的客运专线比较接近,如表1所示。铁路工程和城市轨道交通工程在各个阶段的工程造价的影响程度比较相似,影响程度分别为:投资决策阶段为75%~95%;设计阶段为35%~75%;施工阶段为5%~35%;竣工决算阶段为0%~5%。可以看出影响造价的因素主要集中在建设前期及设计阶段,而这个阶段的工作主要以建设标准为依据。建设标准的选择对铁路工程、城市轨道交通工程的投资高低有着决定性的影响,对铁路工程在建设标准的主要因素方面有:线路等级、车站的规模、线路的选择、路桥隧所占比例等因素。对城市轨道交通在建设标准的主要因素有:线路方式(地下、高架、地面等)、站间距离、车站规模、车站装修等级、设备国产化率等因素。两者在建设标准上的影响程度如表2所示。1.2编制办法的区别与联系1.2.1建设前期编制办法的区别与联系铁路工程现行的建设前期造价编制办法主要是:(1)铁建设[2006]113号文的《铁路基本建设工程设计概(预)算编制办法》(以下简称“2006年113号概预算编制办法”);(2)铁建设[2008]10号文的《铁路基本建设工程投资预估算、估算编制办法》(简称“预估算、估算编制办法”);(3)铁建设[2008]11号文的《铁路基本建设工程投资预估算、估算、设计概预算费税取值规定》(简称“费税取值规定”)。城市轨道交通工程现行的建设前期造价编制办法主要是:(1)建设部建标[2006]279号《城市轨道交通工程设计概预算编制办法》(以下简称“城轨办法”);(2)建设部建标[2007]164号文的《市政工程投资估算编制办法》;(3)铁建设[2006]113号《铁路基本建设工程设计概(预)算编制办法》(以下简称“铁路办法”);(4)《城市轨道交通工程项目建设标准》(建标104-2008)。从上述可知,城市轨道交通工程目前在可研投资估算阶段并没有相应的投资估算编制办法,通常是采用城轨概算编制办法、市政工程投资估算办法。1.2.2承发包及实施阶段编制办法的区别与联系在承发包及实施阶段,铁路工程造价的编制办法主要是依据:(1)铁建设[2006]113号文的《铁路基本建设工程设计概(预)算编制办法》(以下简称“2006年113号概预算编制办法”);(2)《铁路工程工程量清单计价指南(四电部分)》(铁建设[2009]126号);(3)《铁路工程工程量清单计价指南(土建部分)》(铁建设[2007]108号)。在承发包及实施阶段,城市轨道交通工程造价的编制办法主要是依据:(1)《建设工程工程量清单计价规范》GB50500-2008(2013年7月之前采用的是2008版清单);(2)《建设工程工程量清单计价规范》(GB50500-2013)及《房屋建筑与装饰工程工程量计算规范》(GB50854-2013)、《市政工程工程量计算规范》(GB50857-2013)、《城市轨道交通工程量计算规范》(GB50861-2013)等9本工程量计算规范。工程量清单计价模式在铁路工程和城市轨道交通工程的实际操作中,都存在着清单项目归类划分的难度,产生此问题的主要原因是,概预算相应的工程数量、项目与工程量清单项目的划分存在着一定的差异。各专业在计算工程量的方法上不一致,导致不同人计算,结果不同,因此有必要出台统一的更完善的工程量计算规则。此外,目前铁路工程只有预算中有工程量计算规则,估算、概算阶段也应该有相应的工程量计算规则。另外工程量清单要与单价标、总价标、合同等之间的联系还不够紧密,往往在实际实施过程中清单结构和项目变化较大。从近期来看,要尽快完善清单工程量计算规则,对各个阶段提出工程量的深度和要求。此外,工程量要与定额衔接起来,这实际上是清单项目的深细度问题。在这些方面,铁路工程和城市轨道工程都存在还不完善的地方。1.3取费程序的区别与联系1.3.1建设前期建安费组成的区别与联系铁路工程建安费主要由直接工程费和其他工程费用、规费和企业管理费、税金、利润组成,而城市轨道交通工程建安费是由分部分项措施费、工程费、规费、其他费用、税金组成,两者存在不同的建安费组成结构(见表3、4)。同时,城市轨道交通工程中的建筑、装饰、给排水、安装工程、市政相关工程等的建安费用还要结合各省地区的取费程序进行设置和取费。而铁路工程的取费程序则是全国统一,在各章节专业上也是相对的统一,也就是基本是采用同一种取费程序。在实践中,城市轨道交通工程在项目前期阶段的概算编制时,其建安费用的组成格式往往也会常用工程量清单计价模式的分部分项工程费用的形式体现,而其细量组成仍然是各相应定额的计价模式。1.3.2承发包及实施阶段工程量清单计价程序的区别与联系铁路工程量清单计价模式中综合单价=人工费+材料费+机械使用费+填料费+措施费+间接费+税金,由综合单位与分部分项工程量形成了分部分项工程费用。铁路工程量清单合计总价=第一章至第十一章合计+激励约束考核费+设备费+总承包风险费。铁路工程、城市轨道交通工程量清单计价汇总表见表5、表6。城市轨道交通工程工程量清单的取费程序主要是依据:住房和城乡建设部、财政部印发的《建筑安装工程费用项目组成》(建标〔2013〕44号)、《建设工程工程量清单计价规范》(GB50500-2013)。城市轨道交通工程工程量清单计价模式中综合单价=人工费+材料费+机械使用费+企业管理费+利润+风险费用,由综合单位与分部分项工程量形成了分部分项工程费用。城市轨道交通工程量清单合计总价=分部分项工程费+措施费+其他项目费+规费+税金。1.4采用定额的区别与联系铁路工程造价所采用的定额,是全国统一定额,是由原铁道部下发的各项规定所制定的,现行铁路工程定额主要是:铁建设[2010]223号文的《铁路工程概、预算定额》,包括了铁路工程预算定额第一册路基工程、第二册桥涵工程、第三册隧道工程、第四册轨道工程、第五册通信工程、第六册信号工程、第七册电力工程(上)(下)、第八册电力牵引供电工程(上)(下)、第九册房屋工程(上)(中)(下)、第十册给排水工程、第十一册机务车辆机械工程、第十二册站场工程、第十三册信息工程及铁路概算定额等共29册;铁路工程概算指标、估算指标;以及针对客运专线和高速铁路建设需要,补充了路基、桥梁、轨道、信号、接触网等工程的补充定额。而城市轨道工程所采用的定额,只是一部分是建设部制定的统一定额,其余是由各省地方的定额组成,一部分还会用到铁路、电力领域的定额。建设部制定的城市轨道统一定额主要是:《城市轨道交通工程预算定额》(GCG103-2008)共分10册,包括第一册路基、围护结构及地基处理工程,第二册桥涵工程,第三册隧道工程,第四册地下结构工程,第五册轨道工程,第六册通信工程,第七册信号工程,第八册供电工程,第九册智能与控制系统安装工程,第十册机电设备安装工程;以及《城市轨道交通工程概算定额》GCG102-2011建标[2011]99号相应的7册概算定额。城市轨道工程在各省地方采用的主要定额有:各地区的市政工程预算定额、建筑工程预算定额、建筑工装饰工程预算定额、安装工程预算定额等。铁路工程和城市轨道交通工程在定额方面两者之间还存在着2个重要的区别:一是铁路工程的每一个设计阶段,都存在着一定的定额,例如在可行性研究之中,有着投资估算编制办法及相应的概算指标和估算指标等,初步设计之中,又存在着概算定额,施工图设计之中有着预算定额,每一种阶段,它的定额造价能力水平和适应于设计深度。而城市轨道交通工程只有概算、预算定额,这是施工图预算阶段和编制设计概算阶段的依据,对城市轨道交通工程投资控制有着不利的影响。二是铁路工程定额包含铁路工程相应的各专业章节,也就是说铁路工程基本上可以不需要采用到地方或其他工程领域的行业定额,例如,铁路工程自己也有给排水专业定额,而城市轨道交通工程的给排水专业则需要用各省地方的市政工程定额和建筑安装工程定额。铁路工程和城市轨道交通工程在定额方面两者之间同时又存在着一些共性,主要是体现在:轨道、通信信号、供电等专业章节,这些专业章节,由于在工法、工序和技术标准上存在着一定的共性和联系,所以相应的定额也有着一定的相似性。实践中,还存在铁路工程的一些定额更加适用城市轨道工程的某一些项目。1.5计价模式、费用标准的区别与联系在建设前期的投资估算、设计概算、施工图预算铁路工程和城市轨道交通工程都是采用定额计价模式。其中铁路工程的施工图预算,一般是由设计单位编制完成,而城市轨道交通工程,一般设计单位不编制城市轨道交通工程的施工图预算。城市轨道交通工程的施工图预算是在施工图出来后由招标公司或业主编制,主要用作招标控制价。铁路工程和城市轨道交通工程在工程招投标方面都采用了国际通用做法,即工程量清单计价市场竞争的条件下,形成了工程量清单计价的模式。在招投标阶段,招标清单有统一的项目名称、项目编码、工程量计算规则、计量单位和统一的格式,提供分部分项的措施项目、工程项目,以及其他的项目名称,列出相应的工程数量明细清单,并让投标人依据清晰明细的工程量清单,自主报价。铁路工程的人工费、材料费、机械台班费用主要是根据原铁道部人工费用文件、材料信息价、机械台班费用文件,而城市轨道交通工程则根据各省地区的建设工程系列的人工费用标准、材料信息价、机械台班费用文件。其中材料信息价,在实践中,两者都与市场询价比较接近。1.6各章节专业划分的区别与联系铁路工程概预算章节主要有:拆迁及征地、路基、桥涵、隧道及明洞、轨道、通信、信号及信息、电力及电力牵引供电、房屋、其他运营生产设备及建筑物、大型临时设施和过渡工程、其他费、基本预备费等静态投资部分和动态投资、机车购置费用、铺底流动资金等共16章34节。城市轨道工程概预算章节主要有:将概预算费用划分为工程费用(车站、区间、轨道、通信、信号、供电、综合监控(主控)、防灾报警和环境与设备监控、安防及门禁、通风和空调与采暖、给排水与消防、自动售检票、车站辅助设备、运营控制中心、车辆段与综合基地、人防)、工程建设其他费用、预备费、专项费用四部分,共19章38节。两者在章节结构上的划分差别较大,其中拆迁及征地费用,在铁路工程中是单独的一章,而在城市轨道交通工程中则列入了工程建设其他费用中;其中桥涵和路基,在城市轨道交通工程则列入了区间章节;其中车站和车辆段专业,在城市轨道交通工程是2个章节,而铁路工程一般是车站及其相关的房建、设备等是在同一个章节。在建设前期的设计概算阶段时,两者形成的概预算章节成果文件也有较大区别。铁路工程概预算成果文件的组成主要有:总概(预)算表、综合概(预)算表、单项概(预)算表、运杂费表、补充单位分析表、明细劳材表等表格;城市轨道交通工程预算成果文件的组成主要有:册汇总概算表、册概算表、建筑工程个别概算表、安装工程个别概算表、设备购置费个别概算表、主要工程数量表、工材机汇总表等表格。1.7编制软件的区别与联系费用的定额、组成和不同的编制依据,产生了不同的编制专业软件,编制铁路工程的造价,经常使用的是铁道部经济规划研究院铁路工程定额所《铁路工程投资控制系统》软件,而编制城市轨道工程的造价,经常用广联达计或者是清华斯维尔清单计价软件,市场上的城市轨道编制软件呈现多样化,每一个软件都有自身的优缺点,给造价人员带来了更多的选择空间,而由于缺乏统一性,也给工作的审查和交流带来了诸多不便。两者的软件主要差异见表7。在实践中,铁路工程的造价软件在进行数据互导、表格导出、单价分析、定额抽换、进行补充单价分析、材料调差、编制各阶段造价等方面明显优于城市轨道交通工程领域的造价软件。

2结论

通过对铁路工程与城市轨道交通工程造价中的编制依据、取费程序、定额、计价模式、编制软件等方面的区别与联系进行初步的分析,初步探讨了两者在程造价中的编制之中的区别、相同之处和联系,有利于造价管理者正确认识铁路和城市轨道交通造价编制的区别与联系。在实践中应当灵活、合理的掌握和运用两个领域的造价编制方法,合理的运用两者的工程造价指标的差异和相同之处,对项目前期阶段的决策提供参考和指导作用。

作者:林海乾单位:海峡(福建)交通工程设计有限公司

轨道交通工程范文

关键词:城市轨道交通;技术要点;管理措施

1引言

城市轨道交通是城市交通的重要组成,由于其建设规模较大,所涉及的专业、技术等相关要求也较高,施工环境复杂,因而对于质量的控制难度也较大。我国的城市轨道交通工程发展历史较短,相关的建设经验仍然有所欠缺,因此需要针对城市轨道交通施工技术,并落实管理工作措施,保证工程质量。

2城市轨道交通工程施工概述

2.1轨道交通结构型式与构造

城市轨道交通线路通常由车站、区间和停车场等组成。车站是列车在线路上的停车点,其作用是供乘客集散、候车、换车及上、下车;区间是连接车站与车站、车站与停车场间的通道;停车场是车辆停放、列检的场所,同时可作为运营控制办公场地。列车轨道结构型式,与普通铁道类似,通常包括三种,即钢轮钢轨式、橡胶轮胎式和磁悬浮非接触式,当前应用较多的主要是钢轮钢轨式轨道结构,该轨道结构部件包括钢轨、轨枕、道床、连接部分(扣件)、道岔以及其他附属设备。建设过程中,轨道所采用的轨枕型式很多,当前常用的轨枕材料有木材、钢材和混凝土;轨道的道床则主要包括有碴、无碴两种型式,其中的无碴道床则包括长轨枕式整体道床、短轨枕式整体道床和现浇承轨台式整体道床。

2.2轨道交通施工的特点

轨道交通建设规模庞大,其施工计划、组织、控制和管理等各项工作的实施也存在一定困难,因此需要政府、施工、设计、监理、运营单位之间能够互相合作来完成。在实际施工过程中,必需针对各个施工环节采取详细的施工措施,尤其针对关键性施工项目与技术要点,采取必要的管理措施,不可忽略任何施工细节。在轨道交通的施工过程中,因为轨道交通本身承力较大,且位于地下,因此轨道交通地基建设通常较深,在进行挖掘时容易遭遇一些岩石层等情况,因此要设计多种施工技术的备选方案,减小这些不定因素对建筑费用和工期的影响。

3轨道交通施工技术要点分析

3.1明挖法施工技术要点

该施工技术是我国轨道交通施工中,出现较早的施工技术,该施工技术适用于一些建筑高度较低,且密集程度不大的情况。明挖施工过程中需根据现场情况设置必要的基坑围护结构,开挖采取直接从地表直接向下形式,边开挖变架设内支撑支护坑壁;基底验收封底后再自下而上,逐层浇筑墙板。明挖法施工技术相对于其他的施工技术而言,具有的优势在于成本低而效率高,对投资和加快建设进度有利,但对周边施工环境要求比较严格,建筑物密集、交通流量大地段存在基坑开挖风险高、影响交通等影响。但是,由于现代社会与经济的飞速发展,使该技术的运用受到很大开发,从而衍生出半铺盖施工、全盖挖施工等多种方式,其应用使得复杂的轨道交通建设施工方法更灵活多变。

3.2暗挖法相关技术要点

浅埋暗挖的施工理念源起了“新奥法”等隧道施工工法,因掘进方式不同,可分为众多的具体施工方法,如全断面法、正台阶法、环形开挖预留核心土法、单侧壁导坑法、双侧壁导坑法、中隔壁法、交叉中隔壁法、中洞法、侧洞法、柱洞法等。“新奥法”是以维护和利用围岩的自承能力为基点,使围岩成为支护体系的组成部分,支护在与围岩共同变形中承受的是形变应力。因此,要求初期支护有一定柔度,以利用和充分发挥围岩的自承能力。而作用于浅埋隧道上的地层压力是覆盖层的全部或部分土柱重,其地层压力和支护刚柔度关系不大,从减少地表沉陷的城市要求角度出发,还要求初期支护有一定刚度。设计时并投有充分考虑利用围岩的自承能力,这是浅埋暗挖法与“新奥法”主要区别。浅埋暗挖法以改造地质条件为前提,以控制地表沉降为重点,辅之以其他配套技术,比如地层加固、降水等。以格栅(或其他钢结构)和锚喷作为初期支护手段,遵循“新奥法”大部分原理。按照“十八字”原则(即管超前、严注浆、短开挖、强支护、快封闭、勤量)测进行施工。浅埋暗挖法对地表产生的影响不大,尤其是地表的建筑和环境,不影响社会生产生活的正常进行,因此,这种技术得到了较大范围的推广。

3.3盾构法技术要点

盾构法施工隧道具有施工安全、效率较高,在质量方面也得到了较大程度上的提升,在实际施工如图2所示。盾构法首先要求线位上应当允许建造用于盾构进出洞和出碴进料的工作井;其次隧道要有足够的埋深,覆土深度宜不小于一倍洞径,否则上覆土应采取抗浮措施;再者隧道范围地质条件应相对均匀,线路尽量避开孤石、软硬不一地段;同时洞与洞及洞与其它建(构)筑物之间应满足相关要求,否则应做加固处理;盾构施工过程中还应严格把握隧道轴线的误差,管片的制作和安装应在误差范围;管片壁后注浆也是重中之重,针对土壤脱离盾构的现象,需要进行及时测量与核算,注浆的配比需要满足承载需要,以实现对这些区域的有效修整。盾构法的技术优势在于不会对城市地面建筑、施工周边环境等造成不利影响,施工过程也不会产生噪音,尤其适用于地层较深的地段。另外,这种施工的精度较高,尤其是管片和机械制造,误差被控制在较小的范围之内。但盾构需要协同特定的机械设施一起工作,有些需要结合施工的具体情况,进行特殊制作。需要注意的是,在盾构施工中,管片上浮问题要重视,需要全面了解施工环境,尤其是土层的分布、深度、含税等参数,结合不同情况,进行挖掘推力以及速度的设定,并采取相应注浆加固措施。另外,应特别重视对控制盾构机掘进姿态控制,根据监测反馈数据及时调整相关参数,充分发挥千斤顶的作用,特别是做好上坡、下坡和转弯地段的掌控工作。

4城市轨道交通工程施工管理措施

在对城市轨道工程的管理过程中,对于工程的供电、通信、空调通风、给排水、消防以及监控等技术要点,必须通过加强管理工作的方式,保证生产活动中的全方位、全过程安全性,从施工技术等层面,采用新工艺、新方法,提高轨道交通的施工效率。

4.1电气系统施工管理

在管理城市轨道交通建设过程中,电气系统施工的管理,应当突出安全和经济目标,针对电气系统施工整个过程,采取相应的管理措施,重点针对低压动力配电、电气、通信、照明等重点环节,通过加强检查与监督,通过严格的管理措施确保电气系统的施工和应用的安全性,从而有效控制电气系统的施工成本,从而达到对电气系统施工的良好约束与规范。

4.2给排水系统施工管理

由于城市轨道交通中给排水系统一般较为复杂,车站及地下区间隧道采用生产、生活与消火栓相互独立的给水系统;地下区间隧道设消火栓系统。因此,在管理城市轨道交通的给排水系统施工中,必须强化规范意识与安全意识,如果管理工作难以到位,将很容易出现系统的错乱与管道混接等方面的问题。由此可见,必须能够努力做好细节上的管理,才能够给排水系统的施工过程,采取全面的管控措施,从而为给排水系统的功能、正常运行提供保证。

4.3通风系统施工管理

轨道交通通风系统控制必须能实现中央控制、车站控制、就地控制3级控制。应特别重视车站公共区通风机排烟控制,车站公共区采用全空气一次回风集中空调通风系统,热季采用空调,其余季节通风换气。一般在站厅层两端设空调机房,内设组合式空调机组(带粗效过滤、空气净化消毒装置),回/排风,排烟风机和空调新风机。原则上站厅独立设置专用排烟系统,站台公共区排烟由回排风机兼用(排热风机辅助排烟)。车站气流组织采用站厅、站台公共区上部均匀送风,站台集中回风的形式。区间隧道通风系统通常采用活塞通风系统、机械通风系统,地下车站原则上两端上、下行线各设一座活塞/机械通风井,即车站两端上、下行线的活塞风口分别位于线路中心线正上方或侧面。

4.4采用先进施工技术和机械

由于轨道交通的施工作业深度较大,因此对于期间需要使用的吊机械、运输机械等,均要求较高。因此,在进行施工的过程中,应当要求施工人员能够运用先进的机械设备,以实现轨道交通整体施工的机械化,使用机械操作取代人力,在提高施工效率的同时,提高施工精度,从而确保施工质量。依据轨道交通地基填料性质上的差异,从而选择最为适合的压实机器,在使用黏土进行轨道交通填筑施工时,需要注意合理选择压实作用力和压实时间,让工人能够对压实机械的使用足够熟悉,从而达到满意的压实效果。

4.5加强安全技术管理

从事轨道交通的施工人员,应当具备强烈的安全意识,在积极加强轨道交通施工技术的同时,还需要重视安全技术的管理,针对工程施工中存在的安全隐患等方面,进行防范与消除,采取定期检查和维护制度,确保各种机械设备能够正常运行,从而避免轨道交通项目施工中的人员伤亡。对于轨道交通项目必需用到的临时结构需要严格的进行检查才能使用。

5结语

城市轨道交通在城市建设以及运输中的地位越来越重需要,城市交通轨道施工质量的好坏直接关系广大群众的生命财产安全。所以需要求城市轨道交通从业人员必须注意加强施工经验以及理论知识的积累,认真完成每一道施工工序,为我国城市轨道交通工程的建设贡献力量。

参考文献

[1]廖秋林,武福美.城市轨道交通施工新技术的发展与应用[J].施工技术,2014(6):45~46.

[2]马红江.城市轨道开挖施工作业方法及优缺点分析[J].城市建筑,2016(9):57~58.

轨道交通工程范文篇3

关键词:城市轨道;轨道交通;工程;隧道施工;贯通问题;

中图分类号:U213.2文献标识码:A文章编号:

城市中产生了一系列的城市问题,其中尤以交通问题最为严重。大力发展地下轨道交通是当前各大城市的首要任务。轨道交通是城市公共交通的一种形式。由于地铁的建设大多在建筑物及地下管网繁多的城市环境中建设,给工程测量方面带来困难。不仅工程测量精度要求高,而且在工程测量方面有其特殊方法和要求。由于城市轨道交通工程一般线路长,施工单位多,施工工艺复杂,在这种情况下既要保证地铁全线贯通,又要严格按照设计要求使地铁设备准确就位,对工程测量工作提出了较高的要求。城市轨道交通工程隧道施工测量的一项主要任务是保证隧道贯通,其贯通误差问题将直接影响到轨道交通工程建设质量,因此在轨道交通工程测量精度设计中,科学合理地规定隧道贯通误差及其允许值,是轨道交通工程测量的一项重要研究任务。

一、城市轨道交通工程贯通误差的概述

1、与隧道长度无关或关系不大的因素引起的误差

1.1地面控制测量引起的误差

为确保满足隧道施工精度要求,一般在隧道施工区域按二等平面控制网精度和GPS技术布设地面控制网。地面控制网一般由6-9点组成,包括在隧道进、出洞处地面各布设的1组控制点(每组可由2-3控制点组成,特别在出洞口处应布设3点,以方便检验控制点的稳定性),另联测2-3点隧道建设区域已有控制点,地面控制网可以采用多台双频GPS接收机全网同步GPS静态观测或分时段组网GPS静态观测,按照目前的软硬件状况,长时间连续采集数据布设的GPS控制网,其控制点点位精度可达到毫米级。由于静态GPS相对定位布设平面控制网在一定的尺度内例如15KM以内精度均匀,因此,可以认为地面控制测量对隧道横向贯通误差的影响对长、短隧道基本一致。在误差分析时保守估算,地面控制测量对隧道横向贯通误差的影响应小于±10mm。

1.2隧道施工引起的误差

盾构按照地下导线控制测量成果进行定位和定向,由于机械、操作等各种因素的影响会产生隧道施工误差。经验估计,隧道施工引起的误差可控制在±30mm以内。

1.3进洞口洞门施工引起的误差

进洞口洞门施工应以首级控制网作为坐标控制的依据,由于在进洞口附近布设有地面控制点,因此,洞门中心横向误差一般可控制在±10mm。

2、与隧道施工长度相关的因素引起的误差

隧道盾构掘进必须按照地下导线的指引前进,因此,实现对盾构的引导首先需进行把地面控制基准(坐标和方位)传递到地下的联系测量,再采用导线测量的方法在已掘进隧道区域布设地下支导线,这两个环节都对隧道横向贯通误差产生影响。

2.1盾构出洞口处联系测量引起的误差

联系测量的目的是把地面的控制基准传递到地下,包括坐标和方位角。联系测量方法可分为直接传递法和间接传递法两大类。直接传递法是在出洞口大开挖情况下,隧道出洞口处布设的控制点可以较长的后视距离直接与地面首级控制点通视,此时,地下导线起始边即位于地面首级控制网,地面控制和地下导线融为一体,是最理想的情形,其坐标和方位角精度即为地面控制网精度。

2.2地下导线测量引起的误差

地下导线对贯通测量误差的影响主要是由角度测量误差引起,边长测量误差对地下导线横向误差影响较小。

对隧道工程而言横向贯通误差的影响最为重要,从测量误差的影响来看,测量角度及从地面向地下传递方向的误差是影响横向贯通误差的主要因素。纵向贯通误差影响隧道中线的长度,高程贯通误差影响隧道的坡度,由于距离测量与水准测量的精度较高,故这两种误差较横向贯通误差容易控制。因此只有确定出各项贯通误差的限值尤其是横向贯通误差的限值,才能进一步设计出其它环节各项测量的精度。贯通误差的限值是从满足城市轨道交通工程隧道各种限界裕量方面,以及进行隧道测量的实践经验方面分析确定。

二、城市轨道交通工程隧道贯通误差的限值的分析确定

轨道交通工程的测量精度设计是根据轨道交通工程的特征、施工方法、施工精度、设备安装精度和贯通距离等诸多因素确定的,它不仅要保证隧道和线路贯通,而且要满足线路定线和放样、轨道铺设及设备安装的精度要求。科学合理地确定贯通误差的限值(极限误差)是一个至关重要的问题,原则上说应根据轨道交通工程隧道限界预留的安全裕量(在规定的限界基础上另加的值)和测量技术的发展情况(当前及今后若干年测量所能达到的精度)来决定。轨道交通工程隧道限界包括建筑限界、设备限界和车辆限界三种,设计给出的限界值及相应的安全裕量与车辆轮廓线、受电方式、施工方法、断面形状、设备位置诸因素有关,因而各个城市地铁限界也不完全相同。采用交流传动车辆和链形悬挂架接触网时,设计部门给出的横向预留安全裕量分别为:建筑限界中矩形和马蹄形断面每侧50mm,圆形断面每侧100mm;设备限界中矩形和马蹄形断面每侧56mm,圆形断面每侧16mm;车辆限界至设备限界之间每侧150mm:竖向安全裕量为向上加高100mm,向下降低70mm。

由此可知,设计给出每侧横向安全裕量总和:矩形和马蹄形断面为256mm(全断面为512mm);圆形断面为266mm(全断面为532mm)。这是一个综合因素影响量,若能满足要求将保证行车安全。设计考虑的综合因素影响包括:施工误差、测量误差、设备安装误差、线路缺陷、车辆磨耗震动和偏载影响等六项。其中每项因素的影响值应有多少,尤其是测量误差应占横向安全裕量的多少,设计未作出规定。在这种情况下,采用等影响原则分配误差较为合理,同时应考虑到测量技术进步和实际经验,即规定的精度指标既要先进又要在实际工作中能够达到。

综上考虑,测量误差取全断面横向安全裕量总和(512mm)的1/6~1/5较为合适,即横向贯通误差的限差为85.3~102.4mm取整为100mm,横向贯通中误差为±50mm。高程误差取竖向安全裕量总和(170mm)的1/4~1/3为42.5~56.7mm,取整后即高程贯通误差为50mm,高程贯通中误差为±25mm。我国轨道交通工程隧道贯通误差的限值(极限误差)是根据隧道长度不同而变化的,即隧道越长限值越大。长度区间的划分相应限差的大小也是总结多年的实践经验制定的,既能满足隧道贯通和限界的要求,又可以达到测量精度,所以是科学的可行的。测量误差以中误差衡量,贯通误差限值规定为2倍贯通中误差。