粉末冶金的应用篇1

二、工作目标

——粉末冶金产业。积极构建“一基地、一展馆、三中心”,引进高等院校、科研机构共建粉末冶金先进制造研发中心、检验检测中心、孵化中心和科技展示馆,重点发展金属粉末制备、粉末压制与注射形成、粉末烧成、粉末冶金设备制造、粉末冶金模具制造、粉末冶金磁性材料和粉末冶金应用产品等,通过孵化培育小微企业、扶持壮大现有企业和引进新办大型企业,逐步形成粉末冶金先进制造特色基地。

表略

——先进装备制造产业。抓住国家振兴装备制造业的重大政策机遇,围绕消费升级和能源结构调整带来的市场需求,依托现有装备制造企业,积极发展矿山机械、环保设备、输变电设备、汽车零部件等4大门类共25家企业,大力扶持鑫通机械、明兴环境工程、华鹏实业、赣西变压器、四方汽车等骨干企业做大做强,鼓励企业自主创新,突破企业发展关键技术,增强企业市场竞争力。

表略

——光电产业。依托现有光电产业基础,发挥科研优势,紧紧围绕光电子、软件及信息服务业三大领域,重点打造光显示、激光制作加工、光电装备制造三个产业链,加快引进战略投资者,壮大产业规模,促进信息技术应用,努力把科技优势转化成产业优势,建设省级乃至部级光电产业基地,打造我县新的支柱产业。

表略

三、主要措施

(一)明确招商重点

树立宁缺毋滥的招商新理念,变招商引资为招商选资,拒绝带污染的GDP。重点围绕以休闲观光农业、农产品加工企业为主的农业产业项目,以装备制造、粉末冶金、光电产业为主的工业产业项目,以现代物流、宾招、房地产开发、观光旅游为主的三产项目进行招商,着力引进一批投资强度大、产业层次高、市场前景好、产业关联度大的高科技项目和龙头项目。瞄准上市企业、国企央企,用好国家及省、市最新出台的一系列鼓励、扶持政策,做好项目对接,争取资金支持,引进大项目落地。同时充分利用我县花炮产业的巨大影响力和产业优势,跳出传统“圈子”搞招商。对投资额5亿元以上特大型项目,按照一事一议方式,享受特殊的用地、财政税收扶持。

(二)创新招商方法

一是围绕特色园区建设,实施“产业招商”。加大对已确立的主导产业和战略性新兴产业的研究力度,带动一大批上下游企业的发展,形成供需“上下游”的产业链条关系,吸引投资谋求共同发展,达到产业集聚和配套效应;二是围绕园区龙头企业,实施“以商招商”。依托现有的龙头企业,积极引导,认真组织,把更多的企业推向招商引资主战场,借助现有企业信息渠道、人脉资源,善于发挥“活广告”作用,通过他们的亲身感受推介**,牵线搭桥,以最小的成本获取最大的成果;三是通过与高校院所合作,开展“科技招商”。

(三)强化招商责任

招商引资工作是检验干部抓项目、促发展的重要标准,各乡镇、各部门要严格按照年度目标任务要求强化责任意识,切实加大工作力度,尽快制定招商引资工作方案,要求“一把手”亲自抓、分管领导具体抓,将任务落实到具体责任人和部门。对涉及多个部门的重点项目,要明确责任主体、细化任务,按照县委县政府的统一部署,落实目标责任制,做到信息

项目尽快洽谈、在谈项目尽快签约、签约项目尽快开工、开工项目尽快投产、投产项目尽快见效。同时,严格实行招商引资工作奖惩机制。招商引资工作将作为全县干部年度考核、单位评先评优的一项重要指标。对招商引资工作任务完成较好或作出重大贡献的,县委县政府将予以公开表彰并奖励;对完不成招商引资目标任务的责任单位给予通报批评,主要领导离岗招商直至完成任务。

(四)优化招商环境

一是简化办事程序,提高办事效率。对招商引资龙头项目审批实行“一站式”服务,落实限时办结制。

四、工作要求

粉末冶金的应用篇2

【关键词】型钢喷涂金属表面

超音速喷涂强化方法主要应用纳米级碳化物合金粉末,其中主要的材料有四种:即5-10%镍铝粉末、50-60%钴碳化钨合金粉末、5-10%铬钼锰复合粉末和10-20%硼钨复合粉末。

1传统的轧辊孔型表面强化方法及其特点

轧辊是轧机的重要部件,也是轧制生产中的主要消耗备件之一,对型钢的质量起着关键性作用。轧辊的工作条件十分恶劣,且由于轧辊孔型径向方向上线速度不相同,型钢与轧辊之间产生相对滑动,出现搓钢现象,加剧轧辊磨损,加之成品辊孔型过渡圆弧处容易出现应力集中,轧辊局部造成破损,型钢在轧制生产过程中会出现表面划伤、积瘤、边厚差等问题,造成型钢表面质量差,难以交付使用,轧辊在线使用时间短、寿命短,因此需要提高轧辊孔型表面的硬度和减少局部应力破损,从而延长轧辊的使用寿命。[1]目前轧辊孔型表面强化方法有激光表面淬火、表面电火花强化、表面中频淬火、激光熔覆合金层和等离子熔覆合金层等。

1.1金属轧辊表面电火花强化方法

以铸钢轧辊为沉积对象,选用陶瓷硬质合金WC-Co电极在氩气保护气氛下进行沉积处理,其工艺参数为:输出功率为500-4000W,输出电压为60-180V,放电频率为1000-2000HZ,沉积速率为1-5min/cm,保护气体氩气流量设定在5-15L/min。存在的主要问题是:(1)电火花设备投资大,维护费用高;(2)对设备的精度要求高且合金层厚薄不一,合金层的耐磨性能差,效果并不理想,且无法用在孔型过渡圆弧处,进而无法消除圆弧处的应力,加快轧辊孔型磨损,使用寿命短。

1.2型材轧制轧辊激光表面强化工艺

该工艺的步骤顺序:轧辊车削加工,探伤检验,表面预处理,激光强化处理;用车削加工清除轧辊表面疲劳层后,将探伤检验合格的轧辊装入激光加工机床,用喷枪将吸光材料均匀地喷涂在轧辊辊身需处理部位,以致将待处理部位完全致密覆盖,待吸光材料干燥后选择激光强化参数进行强化处理。存在的主要问题是:1)所需的大型激光设备投资大,维护费用高;轧辊预处理要求较为严格,操作过程繁琐,劳动强度大;2)吸光材料的耐磨性能差,使用寿命短,且无法用在孔型过渡圆弧处,进而无法消除圆弧处的应力。[2]

2型钢精轧辊孔型表面合金超音速喷涂强化工艺特点

为了克服现有技术的缺陷,研究人员提供一种型钢精轧辊孔型表面合金超音速喷涂强化方法,采用常规喷涂设备,生产投资少,消除孔型圆弧处的应力集中,提高轧辊的表面耐磨性,提高轧辊的过钢吨位,延长轧辊的有效使用寿命。型钢精轧辊孔型表面合金超音速喷涂强化方法,选用纳米级碳化物合金粉末。与传统的技术相比,优点是步骤衔接有序,简便易于操作;该方法采用合金超音速喷涂强化,使得轧辊孔型表面耐高温、耐磨性提高,轧辊在线时间显著延长,过钢量提高1倍以上,轧辊磨损小,重复使用次数较之前提高2倍以上,轧辊寿命延长2倍以上,型钢质量大大提高,合格率提高10%以上。

3型钢精轧辊孔型表面合金超音速喷涂强化方法的工序流程

3.1表面预处理

型钢精轧辊孔型的表面要保持干净平整,这样可以有效地提高喷涂效果。预处理的主要步骤有:(1)对于表面存在疲劳层型钢精轧辊孔型,以及局部存在严重拉伤沟痕的型钢精轧辊孔型,必要时候需要进行车削处理,这是为后期的热喷涂提供足够的空间;(2)需要清除金属物品表面的油污和油漆等附着物,保持需要喷涂金属的洁净性,通常情况下,可以用溶剂清洗剂除去油污,在油污渗入金属体之后,可以用火焰加热的方法加以去除,另外,若是金属表面存在铁锈,需要利用酸浸、机械打磨的方法进行去除;(3)采用车削、磨削或配合方法去除轧辊表面磨损层,使轧辊基体表面的粗糙度控制在RA0.3至RA3.0之间,然后喷砂处理。

3.2金属表面喷涂

(1)在一般情况下,基于成本的考虑采用常规的喷涂设备,选用经过合理数量配置的纳米级碳化物合金粉末,这类粉末中大多有镍铝粉末、铬钼锰复合粉末和硼钨复合粉末,根据需求和金属属性的不同进行配置,在喷涂的过程中,第一步是在型钢精轧辊上打底,大约需要铺镍铝0.03毫米的粉末,粉末分布均匀无死角;第二步将其他的几种粉末按照一定比例融合后,用工具均匀的喷涂到轧辊表面,其厚度约为0.1-0.2毫米,对于喷枪的高度也有一定的限制,通常情况下喷枪与轧辊的距离为10-15厘米,喷枪与喷涂表面的夹角不能过大,一般要小于89度。[3]喷涂后,轧辊孔型表面得到强化,这主要是合金粉末的原因,使得金属件更加耐磨、耐高温,另外,还起到了一定的效果,极大地提高了型钢的质量;(2)在喷涂这一环节结束后,需要置放在在空气中进行冷却,直至与室温平衡,才能进行下一个环节。

3.3喷涂后处理

(1)为了使得轧辊处理更加完善,需要用封孔剂热喷涂涂层表面,填补其表面存在的空隙和凹处;(2)将热喷涂后的轧辊要在阴凉处凉置2小时左右,待其冷却后,在将其放入加热炉内进行固化加热,其炉中温度需要保持在130度左右,随后在进行常温冷却。

4结语

经过实验发现:型钢精轧辊表面合金超音速喷涂强化方法处理过的型钢精轧辊与未经此方法处理的型钢精轧辊进行对比,改进后的轧辊轧制钢吨位平均提高了1.8倍,轧辊的使用寿命得到大大的延长,轧辊使用寿命提高1倍以上。

参考文献:

[1]岳佳.铁基轧辊表面等离子喷涂涂层组织与性能的研究[D].江苏科技大学,2012.

[2]柳祖林.为冶金零部件穿上延寿“防护服”[N].中国冶金报,2014-12-11007.

粉末冶金的应用篇3

关键词:汽车;制动;稳定性;热衰退

中图分类号:TH21文献标识码:A

1概述

制动性能是车辆最为重要的主动安全性能,其稳定性与行车安全密切相关。摩擦材料对温度的敏感性是制动稳定性的主要影响因素之一。在制动过程中,整车的运动动能通过摩擦材料与制动器间的摩擦转化为其他形式的能量,其中,约90%转化为热能,表现为制动器温度的升高。随着温度的上升,摩擦材料的表面膜、机体表层发生复杂的物理和化学变化,从而导致摩擦系数发生明显变化。

摩擦材料的摩擦系数在较低的温度区间随着温度的升高而增加;但在温度持续升高时,摩擦材料发生热衰退,摩擦系数随着温度的升高而降低;而当温度降低到低温区间后,摩擦系数又会逐渐恢复。摩擦材料的这一特性使制动器的制动性能不同温度下发生明显变化。

不同的摩擦材料对温度的敏感特性不同。目前,汽车制动器所使用的摩擦材料主要有无石棉有机摩擦材料、粉末冶金摩擦材料、金属陶瓷摩擦材料、新型混杂纤维摩擦材料、新型陶瓷摩擦材料等。其中,粉末冶金摩擦材料和金属陶瓷摩擦材料应用较为广泛。

粉末冶金摩擦材料是以金属及其合金为基体,添加摩擦组元和组元,用粉末冶金技术烧结形成的复合材料,具有较好的高温强度、耐热性、热稳定性和经济性;金属陶瓷摩擦材料是由金属基体、组元和陶瓷组分组成的复合材料,也是采用粉末冶金工艺制备而成,其具有较高的热容量、良好的热导性、耐高温、耐磨、摩擦系数高、寿命长等特点,在高温下仍能保持优良的性能。

本文选取了4种不同类型的汽车制动器,并通过制动器台架试验,对制动器制动性能随温度的变化规律开展研究。

2试验设备及方法

2.1试验设备

制动器惯性试验台能够利用制动器台架试验再现实车制动过程,并模拟实车制动的冷却条件,广泛应用于制动器总成性能测试。试验台由计算机、液压系统、控制系统、主轴及主轴驱动系统、惯量系统等构成。计算机控制试验台的启停并记录试验数据;液压系统为受试件提供制动压力;控制系统接收计算机控制指令并实施主轴驱动和制动控制;主轴由直流电机驱动,用于获得制动初速度;惯量系统由不同惯量的等比飞轮构成,可以模拟不同类型车辆的行驶惯量。

2.2安装方法

按照文献4规定,为被测样品的制动蹄片、制动衬片安装测温热电偶,并将被测样品安装在制动器惯性试验台上。

2.3试验方法

以65km/h的速度,3.5m/S2的减速度进行200次磨合制动(初始制动温度不超过120℃),然后进行第一次衰退试验:

初次制动初温:78~80℃;

制动初速度:最高设计车速不超过140km/h时,为80km/h;最高设计车速超过140km/h时,为100km/h;

制动压力:第1次制动减速度为4.41km/h,后续制动与第一次制动的压力相同;

制动次数:10次;

制动周期:45s;

冷却条件:关闭送风系统

完成上述试验后,以65km/h的速度,3.5m/S2的减速度进行20次磨合,然后按照第一次衰退试验的试验条件重复试验,记为第二次衰退试验。

3试验结果分析

记录试验过程中初始制动温度、终止制动温度、平均制动力矩、制动压力、制动减速度等试验参数,并计算单位管路压力下的平均制动力矩(下文记为单位平均制动力矩)。衰退试验中,制动力矩下降和升高的程度,用衰退率来表示,按式1和式2计算:

(1)

(2)

式中:Fa、Fa’为衰退率;MB为第一次制动时的平均制动力矩,Nm/MPa;MBmin为第二次与最后一次制动间的最小单位平均制动力矩,Nm/MPa;MBmax为第二次与最后一次制动间的最大单位平均制动力矩,Nm/MPa。

3.1样品1,鼓式制动器,采用粉末冶金摩擦材料

两次衰退试验中,随着温度的升高,制动减速度与单位平均制动力矩均呈下降趋势。低于100℃时,制动器具有最佳制动性能,而10次连续制动后,温度上升至近250℃,制动效能的衰退率也高达近40%。

进行曲线拟和,可得单位平均制动力矩与温度的关系,曲线见图1。

MB1=f(T1)=222.646-0.421T1(3)

MB2=f(T2)=228.419-0.411T2(4)

式中:MB1为第一次衰退试验的单位平均制动力矩,Nm/MPa;T1为第一次衰退试验的制动器温度,℃;MB2为第二次衰退试验的单位平均制动力矩,Nm/MPa;T2为第二次衰退试验的制动器温度,℃;下文符号含义同上。

3.2样品2,鼓式制动器,采用金属陶瓷摩擦材料:

第一次衰退试验中,随着温度的升高,制动减速度与单位平均制动力矩均呈上升趋势,在近300℃的高温下,制动器获得最佳制动性能;而在第二次衰退试验中,最佳制动效能对应的温度区间为170℃~230℃,温度继续升高时,制动减速度和单位平均制动力矩虽然有所降低,但其稳定性较好。可见,采用了金属陶瓷摩擦材料的制动器在较高的温度下仍能获得较高制动效能。

进行曲线拟和,可得单位平均制动力矩与温度的关系,曲线见图2。

MB1=f(T1)=96.461+0.121T1(5)

MB2=f(T2)=46.534+0.978T2-0.03T2

2(6)

3.3样品3,盘式制动器,采用金属陶瓷摩擦材料

两次衰退试验中,随着温度的升高,制动减速度和单位平均制动力矩有所降低,但在200℃~400℃的温度下,制动器能够获得较为稳定的制动效能。

进行曲线拟和,可得单位平均制动力矩与温度的关系,曲线见图3。

MB1=f(T1)=260.024-1.073T1+0.004T2

1-4.151×10-6T31(7)

MB2=f(T2)=251.363-0.621T2+0.002T2

2-2.886×10-6T3

2(8)

3.4样品4,盘式制动器,采用粉末冶金摩擦材料200℃时,制动器能够获得最佳制动性能,但在第二次衰退试验中,由于持续制动,温度急剧升高至近500℃,制动效能也有较为明显的衰退,可见其制动效能的稳定性较差。

进行曲线拟和,可得单位平均制动力矩与温度的关系,曲线见图4。

MB1=f(T1)=59.001+0.904T1-0.02T2

1(9)

MB2=f(T2)=139.762-0.090T2(10)

4总结

综合本文上述分析,可得以下结论:

制动器制动性能的热稳定性与摩擦材料密切相关;采用金属陶瓷摩擦材料的制动器较采用粉末冶金摩擦材料制动器具有更好的热稳定性;

在200℃~400℃的高温区间,采用陶瓷摩擦材料的制动器仍具有较高的制动效能或是稳定的制动性能,而采用粉末冶金摩擦材料的制动器则会出现明显的热衰退现象;我国汽车行业推荐标准QC/T564-2008规定进行制动器制动效能测试时,参考试验的制动初温均为(80±2)℃,但新型制动材料往往在较高的温度区间上具有更为稳定的性能,因此,对应用了新型摩擦材料的制动器,上述制动初始温度的规定有待商榷。

随着新型摩擦材料研究的出现,相关标准的部分条款已不再广泛使用,只有不断细化、更新标准技术内容,开展标准研讨才能充分发挥其指导作用,推动制动技术向前发展。

参考文献

[1]马卫平,野南海.汽车用摩擦材料国外研究进展[J].企业技术开发,2007,(05):31

[2]马东辉,张永振,陈跃,官宝.制动摩擦材料高速摩擦学性能的主要影响因素[J].与密封,2003,(06):44-47.

粉末冶金的应用篇4

关键词:粉末冶金,材料摩擦,主要因素

1.材料组织和亚结构的影响

试验表明激光淬火硬化区的组织和亚结构是影响激光淬火铁基粉末冶金材料摩擦学特性的主要因素。

铁基粉末冶金材料经表面淬火处理后表现出良好的耐磨性能与淬火组织中各相的形态、大小与分布有关。在表面处理超快速加热条件下,马氏体继承了高温状态下奥氏体碳浓度微观不均匀性,获得了极细针状马氏体与板条马氏体的混合组织,提高了淬火组织的强度和硬度。此外,马氏体还继承了奥氏体的高密度位错,造成了强烈的静畸变效应,从而提高了磨损过程中的塑性变形抗力和断裂强度,提高了裂纹萌生的应力,也改善了耐磨性能。在淬火过程中形成的下贝氏体,内应力小、裂纹少,组织均匀、热稳定性高,具有较高的韧性及形变硬化能力,粘着磨损抗力优于马氏体。

表面处理前的磨痕形貌可见严重塑性变形和粘着现象,主要为塑性变形引起的粘着磨损机制。而表面淬火处理后的磨面较平滑。其滑动摩擦体系是在氧化磨损和塑性变形导致的多种磨损机制共同作用下的材料损耗过程。

表面淬火后得到的是马氏体/下贝氏体复相组织,由于表面硬度较前一材料略低,其磨损表面可见轻微犁削磨损现象,磨损率高于孪晶马氏体/位错马氏体混合组织。但是,在较高载荷下,马氏体/下贝氏体复相组织具有较好的强韧性搭配,具有较低的裂纹和缺口敏感性,在磨痕中可以观察到裂纹尖端的钝化现象,没有发生孪晶马氏体/位错马氏体混合组织中在高载荷下常见的裂纹快速扩展的情况,因此在较高载荷下表现出较好的耐磨性。

残余奥氏体在淬火组织中是一个强韧相,一方面,残余奥氏体细化,具有一定的强度和硬度;另一方面,又具有极好的韧性,在磨损过程中优先发生塑性变形,因堆垛层错能较低,易形成扩展位错,导致位错密集,产生明显的加工硬化效果。同时在变形过程中,一部分残余奥氏体应变诱发马氏体,松弛应力集中,减慢裂纹萌生和扩展过程。因此,适量的残余奥氏体的存在也可改善淬火层的耐磨性能。

在表面相变硬化过程中,残余奥氏体的极高位错密度和马氏体晶粒的晶格缺陷会阻碍疲劳源的萌生与裂纹的扩展,从而改善了材料的抗疲劳性能。另外在相变硬化过程中,由于材料内部的温差和马氏体形成时体积大大膨胀,在表层形成很大的残余压应力,而残余压应力能松弛材料内部的应力集中,因此能有效地改善抗疲劳性能。

铁基粉末冶金材料中存在的游离态石墨在摩擦过程中不断覆盖摩擦界面,可以形成稳定的润滑工作层,可以防止摩擦副的咬合,也起到了很好的减磨作用。

铁基粉末冶金材料中存在的少量合金碳化物不仅可以强化基体,在摩擦磨损过程中,还可在磨损表面起到承受载荷、限制两对磨材料直接接触的作用,减少了两接触表面的真实接触面积,从而可以对提高材料耐磨性起到一定的作用,在本试验材料中由于合金碳化物的含量太低,所以其作用并未表现出来。

2.孔隙的影响

粉末冶金材料的多孔性为材料摩擦磨损行为的研究增加了新内容,成为区别于其它致密材料磨损的一大特点。对孔隙在磨损过程中的作用,至今还未得出一致的看法。

S.C.Lim和J.H.Brunton用装有扫描电镜的动态销-盘型磨损台架研究了烧结铁的无润滑磨损机制和孔隙在磨损过程中的作用。发现磨损与开口孔隙的数量有关。在干摩擦情况下,孔隙是产生和留集磨屑的地方,这一作用使材料的磨耗降低。其试验结果表明,低载时孔隙度高反而磨损小,高载时影响不大。当表面产生材料流变(滑移或机械抛光)而将大多数开口孔隙覆盖时,磨损行为与非烧结铁相似。

密度对磨损率的影响是孔隙在摩擦磨损过程中微观作用的宏观表现。在本试验研究的摩擦磨损过程中,孔隙既可集留磨屑又是磨屑的产生源之一。在较低试验载荷下,孔隙的主要作用是集留磨屑,使摩擦表面变得更加光滑。在这种情况下,孔隙度高有助于磨损率的降低。在较高试验载荷下,孔隙的集留磨屑效用降低,孔隙成为裂纹源及产生磨屑的场所。孔隙是以两种形式产生磨屑的:(1)孔隙边缘物质碎裂、脱落。(2)孔隙作为应力集中源产生裂纹,裂纹沿粉末颗粒的弱连接处而引起撕裂。当试样与对偶材料相对滑动时,由于摩擦发生粘着,使试样表面发生剪切应力,当剪切应力超过屈服强度时,表面材料发生塑性流变,并在孔隙边缘发生应力集中,当应力达到材料的剪切强度时,便出现裂纹。裂纹沿粉末颗粒、烧结颈等脆弱处或沿连通孔隙扩展,于是发生撕裂,产生磨屑,同时孔隙又是阻止裂纹进一步扩大的因素。随着密度的提高,孔隙减少,孔隙的上述作用也相对减弱,从而材料的磨损性能相对改善。因此要提高铁基粉末冶金材料在较高载荷下的耐磨性,必须提高材料的密度级别。

3.摩擦表面膜的影响

摩擦表面和亚表面材料的物理化学性能决定了材料的摩擦磨损行为。摩擦表面层理论认为:在摩擦副两个表面的相互作用下,材料表面将产生一个不同于基体材料的表面层。该层在形成过程中有物理的、力学的作用,如塑性变形、固态相变和晶粒碎化;也有化学的作用,如摩擦副之间的化合物、材料的氧化和腐蚀等。在各种因素的综合作用下,摩擦表面层的形态、成分和性能存在非常大的差异。常见的有两种情况:一种是主要由塑性变形层组成的摩擦表面层;另一种是主要由表面涂抹层组成的摩擦表面层。本试验过程中在铁基粉末冶金材料的磨损表面也观察到存在摩擦表面层,厚度约在几百纳米到几微米之间。论文大全。论文大全。

表面淬火处理后铁基粉末冶金材料表面得到了混合马氏体+残余奥氏体的混合组织,材料的表层及次表层硬度得到了显著的提高。磨痕形貌表明,铁基粉末冶金材料的磨损率主要取决于试样表面氧化膜的生成及损耗速度。因此,可以认为其占主导地位的磨损机制是氧化磨损,同时存在磨粒磨损。在摩擦滑动过程中,次表层不发生或仅发生微量塑性变形,摩擦热使表面温度升高,这有利于氧化反应的发生,在摩擦表面生成氧化膜,可起到保护表面的作用。论文大全。由于氧化膜的存在,表面淬火处理后的磨损试样表面较光滑,摩擦磨损性能得到改善。

参考文献:

[1]陈爱武.PA/Cu复合粉末激光烧结成型机理研究[J].工程塑料应用,2008,(06).

[2]陈昕,葛琼,刘鹤.中碳硅锰钢氧化脱碳特性的研究[J].鞍钢技术,2004,(01).

[3]于同仁,惠卫军,张步海,苏世杯.中碳钢形变及冷却过程中的组织演变[J].安徽冶金,2006,(01).

粉末冶金的应用篇5

[关键词]Al;Zn;Fe-18Cu基粉末冶金摩擦材料;组织和性能;影响

中图分类号:TB333文献标识码:A文章编号:1009-914X(2016)07-0337-01

20世界40年代,我国对铁基粉末冶金摩擦材料就开始了研究,在50年代,将其应用在了航天领域。铁基材料不仅耐高温,而且承载能力强,价格低廉。但是,铁基粉末冶金摩擦材料与钢铁等金属材料混合使用时,容易发生粘结【1】。为降低铁的塑性,使其强度得到进一步增强,因此添加了其他元素来达到这一目的。在上世纪60年代,我国开始研制铁基粉末冶金制动材料,并且取得了一定成就。随着社会经济和交通运输业的发展,摩擦材料的应用更加广泛,对制动性能的要求更加严格。鉴于此,本文结合新工艺、新技术对Fe-18Cu基粉末冶金摩擦材料展开进一步的研究和探讨。

一.粉末冶金摩擦材料新技术

实践表明,当前广泛使用的钟罩炉加压烧结法存在能耗大、原材料利用率低、成本较大等缺点。因此,新工艺、新技术的研究是为了在保证产品性能的前提下,保证生产成本最低,获得较好的经济效益和社会效益。

(一)无压烧结工艺

研究资料表明,传统的烧结工艺最突出的问题就是资源浪费【2】。因此,相对于传统的烧结工艺,无压烧结工艺不需要施加压力就能够实现材料的烧结,因此,这一项新型的工艺得到了广泛应用。现实中,无压烧结工艺主要有轧制法、电镀法以及离子喷涂法等。该项工艺制备的材料具有摩擦系数小、孔隙率较高等特点。

(二)粉末轧制工艺

此种工艺指的是压实被引入旋转轧辊之间的粉末,使之形成粘聚状态的半成品,然后对其进行活化烧结的一种工艺。通过实践表明,粉末轧制工艺所制备的材料,具有较高的使用性能。

(三)表面处理技术

表面处理技术主要包含两个方面,一是通过对材料表面进行渗氮、渗硼及硼铬共渗来达到摩擦材料烧结的目的;另一方面,通过处理材料表面,使其形成氧化膜。而提高产品的质量和改善多层烧结,是通过骨架与粉末层的粘结来实现的【3】。

二.Al、Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响

(一).试验方案

为了进一步了解Al、Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响,本文进行了试验分析。本实验用纯度大于99%的Al和Zn及纯度大于99.5%的Fe-18Cu各200目。并结合试验需要,准备了最先进的试验机、混料机、显微镜等设备。本实验中,试样制备的工艺为:原料配料、混合压制加压烧结。为了保障试验的可靠性,对各项工艺参数进行了严格的设置,对各项材料性能也进行了专业的测试。

(二).Al对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响

众所周知,Cu不仅导热性能好,而且抗氧化能力强,因此和铁质对偶件的相溶性比较小,因此铜基摩擦材料耐磨且结合平稳。但是,在高负荷条件下,铜基粉末冶金摩擦材料摩擦系数不稳定。因此,结合铁基与铜基材料的优点,研制新型的摩擦材料有非常重要的意义。

通过试验表明:

(1)Al元素添加量对Fe-18Cu基粉末冶金摩擦材料组织和性能有一定的影响。当添加量低于3%时,材料组织有AlCu4新相生成,其基体组织也被细化,而且晶粒分布非常均匀。当添加量不断增加时,材料的力学性能也不断提高。试验表明,当Al元素添加量为2%时,基体力学性能最好,硬度达到95.5HB,抗压强度达到368Mpa。

(2)试验表明,当Al含量增加时,材料摩擦系数先呈上升趋势,而后又缓慢下降;当Al含量等于2%时,材料表面形成致密的薄氧化膜;当Al含量等于3%时,材料表面生成较厚氧化膜,而且容易剥落;此外,试验表明材料的磨损主要为犁削磨损。

(3)Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响

Zn具有强化基体的功能,通过试验表明,Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响如下:

(1)当添加0%-2%的Zn元素时,材料在显微镜下显示有FeZn3新相生成,添加Zn的材料组织孔隙率下降,晶粒细化;当Zn含量增加时,材料的抗压强度先呈上升趋势,后逐渐下降;当Zn含量为1%时,该材料硬度和抗压强度最佳,分别达到103HB和383MPa。

(2)当加大Zn元素的添加量时,材料的摩擦系数先下降后上升。在转速500r/min、Zn含量为1%时,摩擦系数为0.268;当转速1500r/min、Zn含量为1.5%时,摩擦系数为0.260;在转速为中速时,加入Zn元素的材料的磨损形式为氧化磨损;当转速为高速时,材料磨损形式主要是疲劳磨损以及磨粒磨损。

三.结束语

铁基粉末冶金摩擦材料和铁质对偶件有较大的相溶性,所以容易在摩擦时拉伤对偶表面,甚至产生较深的沟槽,导致制动性能降低或不稳定。而铜基摩擦材料,不仅抗氧化性能较好,而且耐磨性好,但是铜基摩擦材料的制备成本较高。因此,要满足使用性能以及考虑经济成本,研发价格经济、性能又好的摩擦材料是当前市场备受关注的问题。本文主要结合新工艺和新技术,对铁铜基粉末冶金摩擦材料进行试验和研究,并且从物理性能以及力学性能等多方面来阐述研究结果,从而揭示Fe-18Cu基粉末冶金摩擦材料的组织结构和性能,为Fe-18Cu基粉末冶金摩擦材料的进一步应用与开发提供科学的资料【4】。

参考文献:

[1]杨明.Al、Zn对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响[D].南京航空航天大学,2011.09(14):117-118.

[2]黄建龙,王建吉,党兴武,陈生圣,谢军太.铝含量对铜基粉末冶金材料性能的影响[J].与密封,2013,01(31):156-160.

粉末冶金的应用篇6

关键词:粉末冶金核心竞争力差距策略

中图分类号:F270文献标识码:A

文章编号:1004-4914(2016)12-285-02

20世纪90年代中期以来,汽车工业的快速发展,为高性能粉末冶金产品的生产和发展提供了良好的机遇。但与此同时,随着全球经济一体化的深入,国外优秀粉末冶金企业也开始进驻中国市场,瓜分这块巨大的“蛋糕”。这使得国内粉末冶金企业不仅要面临国内企业间同质化的激烈竞争,还要面对跨国企业的猛烈冲击,以及上游原料成本的挤压和下游及经销商不断提高的产品质量标准。而我国大多数粉末冶金企业的现状却是专业化水平低,产品开发能力弱,企业自身核心竞争力较低。由此,使得企业在不断上涨的成本压力下并不能有效地得到发展,迫使企业收益水平不断下降。面临当前困境,积极培养自身核心竞争力已成为目前粉末冶金企业亟需解决的问题。

一、国内粉末冶金企业与国外企业核心竞争力的差距

随着中国汽车工业的快速发展,汽车粉末冶金行业在近10年也取得了一定进步,但与发达国家相比,国内粉末冶金业仍然存在较大差距。

1.产品技术水平相对较低。主要表现在产品档次上,以中低端产品为主。综合评价,我国粉末冶金产品基本处于发达国家上世纪80年代中后期水平。当时,国外能够大批量生产的典型粉末冶金制品已经很多,包括动力转向机阀套、油泵摆线转子、同步器固定齿座、同步器齿环等。目前,我国正在开发这些产品。上世纪90年代初,国外开始开发粉末锻造连杆、双金属同步器锥环、组合烧结凸轮轴、温压无声链轮、组合烧结行星齿轮托架等,我国还涉足很少。

2.产品研发水平差距较大。目前,国内绝大多数企业仍然处于来图加工阶段,一般仅承担工艺研发,基本谈不上真正意义的产品研发;技术创新能力较差,基本处于引进消化吸收与模仿创新阶段,真正意义上的原始创新微乎其微;技术研发的软件与硬件手段正处于逐步建设与完善阶段,特别是技术分析与设计验证手段很不完善;产品研发管理水平不高。

3.过程控制与产品质量水平存在一定差距。尽管粉末冶金行业位于前10位的企业均建立了有效的质量管理体系,并得到客户的认可。但过程控制能力与产品质量水平,尚处于发达国家上世纪80年代末期至90年代初期的水平。

4.标准化水平目前仍处于初级阶段。即没有形成完整的粉末冶金制品产品标准体系、工程标准体系等,企业标准更是残缺不全。因此只能参照国外标准生产,如美国标准、日本标准等。

5.品牌建设亟待加强。尽管少数企业在国内粉末冶金行业享有一定的知名度,但在粉末冶金制品行业的品牌效应不明显,更无法谈及在世界粉末冶金制品行业的知名度了,所以品牌建设亟待加强。从应用环境看,国外汽车及零部件设计师已很清楚粉末冶金制品的特性,所以粉末冶金在汽上的应用不存在任何障碍,国内还需要做广泛的宣传、解释和推广工作。

二、粉末冶金企业核心竞争力差距形成的原因分析

粉末冶金企业不适应市场的需求,在产品质量、产品结构、生产和需求等方面的差距形成的主要原因如下:

1.行业的组织结构不合理。全国从事粉末冶金行业产品生产和制造的企业很多,目前多达400家以上。但是,这些生产制造厂家绝大多数规模较小、生产条件和制造工艺落后,造成整个粉末冶金生产制造行业结构水平偏低。行业结构的不合理容易造成低端产品的生产过剩和恶性竞争,进而严重影响整个行业的经济效益。因此,进行必要的行业结构梳理和整合,淘汰产品、技术、效益等方面落后的企业,控制向低端粉末冶金产品领域的过度投资,都是十分重要和必要的。要坚持扶优与汰劣结合,升级改造与淘汰落后结合,兼并重组与关闭破产结合。合理利用和消化一些已经形成的生产能力,进一步优化企业结构和布局。

2.产品结构不合理。总体来说,粉末冶金领域的产品需求前景还是非常广阔的,粉末冶金制品的用途也越来越广泛,发展粉末冶金高端产品是大势所趋。目前国内企业生产的粉末冶金产品,主要集中在低端领域,生产过剩造成一定的产需矛盾。而另一方面,在高端产品线上,又是一种供不应求的现象,目前产能不能满足现有市场的需要。因此,优化产品结构、提升产品档次、增强市场竞争力非常的重要和迫切。在技术领先的优势产品上应该大力促进在该领域的巩固和出口,并制定相应的品牌战略;在相对落后的弱势产品,应该走上引进、吸收、创新的良性循环道路。对于高低端产品的结构控制,应该通过相关行业和税收政策来促进产品结构的调整和优化。

3.生产设备和生产工艺影响产品质量和档次。由于我国粉末冶金工业起步于上世纪七八十年代,基础相对较为薄弱。目前国内企业拥有的先进生产设备少且不配套,严重影响了产品质量档次的提升,直接造成了竞争力的下降。同时,由于生产设备和工艺的落后,使产品的生产效率低下,生产成本提高。比如,因为不具备相应的生产设备和生产技术工艺,多年来我国一直从国外进口预合金化易切削钢粉和低合金钢粉。加大技术投资,促进生产设备和生产工艺的更新换代和不断创新,是提升粉末冶金领域整体水平的直接方法。

4.新产品开发能力低。目前我国的粉末冶金技术人才普遍比较短缺,这对于推动和促进一门新兴产业的技术进步和发展是非常不利的。科研能力的薄弱,直接导致了新产品研发能力的下降。同时,受到工艺装备、模具模架加工制造、后续处理等多种条件的限制和影响,行业内新产品的开发速度也比较慢,造成了市场响应的滞后。另外,国内粉末冶金企业与国际同行业的交流比较少,相对封闭的环境限制了国内粉末冶金企业与国际化的接轨,延迟了对领域内新技术、新动态的及时掌握和应变。

5.人员结构不合理。国内大部分的粉末冶金企业,职工素质普遍较低,中、高级技术人员和管理人才严重缺乏,不能满足生产、经营的需要。而粉末冶金行业作为一个新兴的机械制造领域成员,需要大量的专业化、层次结构合理的人才队伍。同时,人员结构配置的不合理,也是国内粉末冶金企业普遍面临的一个问题。一些企业重管理轻经营,或者重经营轻技术,或者重技术轻生产,这些都是非常不合适的。人才的知识结构、年龄结构、专业结构、性别结构需要优势互补,才能发挥出整体协同优势,才能与企业的生产经营相适应,提高人力资源的整体配置效率。人员结构的不合理配置和管理,将会导致人才队伍的流失,影响企业核心竞争力的持久性发展。

三、粉末冶金企业核心竞争力提升策略

1.通过战略调整提升企业核心竞争力。准确的市稣铰远ㄎ皇翘嵘企业核心竞争力的根本前提。我国加入WTO后,随着贸易壁垒的逐步消除,国内市场与国际市场将趋于融合,原来企业所熟悉的国内市场环境也将发生重大的变化。在这种情况下,企业不能只满足于在原来较小的且受保护的市场上占有优势,而要建立在国际国内广阔市场上打拼的战略思想,从自身状况出发,考虑企业市场战略调整和发展问题,实施恰当的市场战略定位,以保持和提升企业核心竞争力。在新的形势下进行市场战略定位,企业首先要分析所面临的市场环境,了解顾客需求,确定企业的目标顾客、应提供的产品或服务,以及如何高效率地给顾客带来更大的价值,为选择相应的市场战略提供依据。

2.强化技术创新提升企业核心竞争力。技术创新是企业适应当代科技发展,获得竞争优势的根本方法之一。在知识经济的背景下,新技术对企业发展的影响明显,技术变化速度加快,市场竞争激烈,企业要保持并增强自己的市场竞争能力,必须加快技术创新步伐,确保竞争优势。首先,企业要广纳国内外优秀科技人才,联合国内权威的研究结构,不断提高自己的研发层次和水平。其次,企业可以优化技术组合,大胆引进、消化、吸收先进技术,淘汰落后技术,争取在国外先进技术的基础上有所创新和进步。第三,不断强化已有先进技术的改进和升级,坚持不懈地对其核心技术进行创新,使其保持在世界中长期领先地位。要紧跟不断出现的新技术和新商机,及时做好企业核心技术的改造、更新、充实和提高工作。

3.加强人力资源管理提升企业核心竞争力。人力资源是企业最重要的核心竞争力。有效的人力资源管理既可以帮助企业降低成本,又有助于企业在产品差异化方面获得竞争优势。企业必须将人力资源管理与企业发展战略结合起来,实施战略性人力资源规划。企业在选拔和任用人才方面可以采取多元化和弹性化方法,建立有效的激励模式,建立起一种把员工同企业发展前景紧密联系在一起的共担风险、共享收益的新型分配机制。根据员工的不同需要,提供各种形式的福利方案,增强员工的向心力和企业的凝聚力。

4.加强企业文化建设提升企业核心竞争力。企业文化是孕育企业核心竞争力的土壤,也是企业核心竞争力的外在表现。公司加强企业文化建设应采取的措施,首先塑造企业文化个性。结合企业具体情况进行企业文化塑造,突出企业价值观念、企业精神、经营理念上的差异,充分分析内外因素,提炼核心价值观,从而进一步提升企业核心竞争力。其次,培育团队精神,加强团队协作。公司团队成员之间要建立和形成互相认可、互相负责、共同遵守的契约,为实现共同目标而努力工作,要让管理亲和于人,使管理者与员工融为一体,互相激发灵感,最大限度地激发员工的积极性,以形成积极向上的价值观和道德观。最后,充分发挥企业家在企业文化建设中的主导作用。充分发挥企业带头人的领导和表率作用,从本企业的特点出发,吸收和借鉴古今中外的优秀文化传统和经营理念,不断在实践中发展和完善。

总之,随着全球经济一体化和市场竞争国际化的步伐大大加快,如何能够在日益激烈的市场竞争中持续保持优势已成为粉末冶金企业关注的焦点。我们可以通过战略调整、强化技术创新、加强人力资源管理和企业文化建设这几方面入手来增强企业核心竞争力,从而使企业在激烈的市场竞争中立于不败之地。

参考文献:

[1]黄伯云,易建宏.粉末冶金材料和技术发展现状[J].上海金属,2007(2)

[2]韩风麟.亚洲粉末冶金零件产业的发展与现状[J].新材料产业,2008(1)

[3]吴元昌.粉末冶金高速钢生产工艺的发展[J].粉末冶金工业,2007(2)