纳米材料研究报告篇1
关键词:纳米材料应用
纳米发展小史
1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。
1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。
什么是纳米材料
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。
一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
1、纳米技术在防腐中的应用
由加拿大万达科技(无锡)有限公司与全国涂料工业信息中心联合举办的无毒高效防锈颜料及其在防腐蚀涂料中的应用研讨会近日在无锡召开。
中国工程院院士、装甲兵工程学院徐滨士教授,上海交通大学李国莱教授,中化建常州涂料化工研究院钱伯荣总工等业内知名人士分别在会上作了报告,与会者共同探讨了纳米技术在防锈颜料中及涂料中的应用、无毒高效防锈颜料在防腐蚀涂料中的应用以及新型防锈涂料和防锈试验方法发展等课题。
徐院士就当前纳米技术的发展情况作了简单介绍,他指出:纳米技术的研究对人类的发展、世界的进步起着至关重要的作用,谁掌握了纳米技术,谁就站在了世界的前列。我国纳米技术的研究因起步较早,现基本能与世界保持同步,在某些领域甚至超过世界同行业。
作为国内表面处理这一课题的领头人,徐院士重点谈了纳米技术对防锈颜料及涂料发展的促进作用。他说,此前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒防锈颜料,有的性能不错,甚至已可与铬酸盐相比,但均因价格太高,国内尚未引进。我国防锈涂料业亟待一种无毒无害、性能优异而又价格低廉的防锈颜料来提升防锈涂料产品的整体水平,增强行业的国际竞争力。
中化建常州涂料化工研究院高级工程师沈海鹰代表常州涂料院,在题为《无毒高效防锈颜料在防腐蚀涂料中的应用》报告中,详细介绍了复合铁钛醇酸防锈漆及复合铁钛环氧防锈漆的生产工艺、生产或使用注意事项、防锈漆技术指标及其与铁红、红丹同类防锈漆主要性能的比较。
在红丹价格一路攀升的今天,这一信息无疑给各涂料生产厂商提供了巨大的参考价值,会场气氛十分热烈,与会者纷纷提出各种问题。万达科技(无锡)有限公司总工程师李家权先生就复合铁钛防锈颜料的防锈机理、生产工艺、载体粉的选择、产品各项性能指标及纳米材料的预处理方法等一一做了详细介绍。
目前产品已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,为此获得了中国专利技术博览会金奖.复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用,并已由总装备部作为重点项目在全军部分装备上全面推广使用。
本次会议的成功召开,标志着我国防锈涂料产业新一轮的变革即将开始,它掀开了我国防锈涂料朝高品质、高技术含量、高效益及全环保型发展的崭新一页。其带来的经济效益、社会效益不可估量。这是新型防锈颜料向传统防锈颜料宣战的开始,也吹响了我国防锈涂料业向高端防锈涂料市场发起冲击的号角2、纳米材料在涂料中应用展前景预测
据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。
由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。
在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。预期十五期间,各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。
纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。
我国每年房屋竣工面积约为18亿平方米,年增长速度大约为3%。18亿平方米的建筑若全部采用建筑涂料装饰则总共需建筑涂料近300万吨,约200~300亿元的市场。目前,我国建筑涂料年产量仅60多万吨,世界现在涂料年总产量为2500万吨,每人每年消耗4千克,为发达国家的1/10,中国人年均涂料消费只有1.5千克。因而,建筑涂料具有十分广阔的发展前景。
纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛
纳米材料研究报告篇2
“弃暗投明”的新技术
宋延林笑着说,走上“纳米材料绿色制版技术”的研发之路,始自一次“意外”。
那是1995年,正在攻读博士学位的宋延林,琢磨着自己关于信息存储材料的研究工作。他不想重复别人的材料体系,于是有了一个大胆的想法:既然当时国际上主流的信息存储材料是无机材料,那么自己就挑战一下有机材料。
这在当时并不被人看好,但他与合作伙伴最终成功地将信息存储点的尺寸从十几个纳米缩小至1.3个纳米。相关论文很快被国际权威学术期刊接受发表,研究成果亦被两院院士评选为1997年“中国十大科技进展”之一。“这给了我一个很大的启发,不是国外没有做过的事情就不能做。以前中国人总觉得引领科技进步的一定是西方国家,我们只能一味追赶,似乎最好的成绩也只能是缩小与国际先进水平的差距。但事实不应该是这样。”
从那天开始,宋延林就打定主意,要做与别人不一样的东西。多年以后,灵感聚焦于“印刷技术”。
从成像原理来看,印刷技术的发展可以划分为两大阶段:首先是“物理成像阶段”,基于物理凹凸结构成像,譬如雕版印刷、木活字印刷、铅字印刷。接下来是“化学成像阶段”,基于化学感光成像,主要有两种技术,一种是激光照排技术,上世纪80年代由王选院士主持研发的汉字激光照排技术,目前仍是中国印刷业的主流技术;另一种是国际上流行的计算机直接制版(CTP)技术。
但无论是激光照排技术还是CTP技术,都是感光成像的过程。激光照排的过程与胶卷曝光类似:先将计算机处理的信息通过激光扫描到感光胶片上,再通过曝光、显影、定影得到一张底片,底片在涂有感光层的PS版上重复曝光、显影、冲洗的过程,得到最终印版。
“事实上,高质量的信息传输,应尽可能减少信息转换的环节。有没有一种办法,可以直接打印出印版,省略化学显影过程呢?”
宋延林首先考虑的是确定印版的材料要求。对于印刷而言,印版的图文区需要“沾油墨”,空白区则“不沾油墨”。高质量的印刷,要求两个区域必须形成足够大的反差,否则很容易“糊版”。宋延林根据信息存储中提高信噪比的要求和纳米材料控制表面性质的研究基础,在印版表面形成特殊的纳米结构,确保图文区和空白区有足够的反差,且界面清晰。
不过事情远没有大功告成,“耐印力”成为紧跟着必须面对的挑战。“如果要让这项技术走向市场,必须确保它可以满足常规生产要求。目前主流印刷版材的耐印力,比如印刷普通报纸,需要在10万份以上。最终我们通过纳米材料的复合增强,使新版材的耐印力达到同一水准。”
所谓“复合增强”,打个通俗的比方,和增强柏油马路耐磨性类似:只铺沥青的路面极易损坏,在沥青中掺入石子,就大大提高了耐磨性。“虽然听起来简单,但实际操作时,还要保证极其细微的纳米颗粒不团聚,特别是在南方、北方零上40℃至零下40℃的温差下,不沉淀,不堵头,打印出的墨滴大小要与版材表面张力、纳米孔的孔径形成定量可控的关系,实现所有这些,背后是一系列复杂细致的研究工作。”
除此之外,由于纳米材料绿色制版技术在国际上并无先例可循,因此亦没有成熟的配套设备。为此,技术团队还要开发针对报业、商业和票据类的设备及相应软件。
当一切都从理论化为现实,一种全新的印刷制版技术横空出世。宋延林一口气描述它的操作原理:“用计算机处理好全部图文信息,直接将印版打印出来,图文区是亲油的,空白区是亲水的,两者反差足够大,足够耐磨。”
新技术的优势显而易见。首先,传统的化学成像过程,印版与胶片的生产、运输和使用过程都要严格避光,非常麻烦。而纳米材料制版技术,则是基于“非感光”的全新原理,宋延林打趣说,有领导说这是个“弃暗投明”的新技术。
其次,依赖化学成像形成的印刷产业链,有两大无法根除的污染。
一是制版的污染。感光成像的化学冲洗过程,是将感光材料全面覆盖在版基上,然后根据实际图文情况,将“图文区”保留,“空白区”侵蚀掉。如此一来,80%以上的感光材料都被浪费,同时造成每年百万吨量级的废液排放。
二是版基的污染。目前主流印刷制版技术的铝版基制备,实际是一个电解氧化的过程,电解液里的浓酸,会腐蚀消耗铝材,再加之曝光过程中的损耗,大量的铝材变成污染物被浪费,并造成严重的金属离子污染。而废酸用石灰中和后,又会形成大量废渣。
“纳米材料印刷制版技术是用计算机直接打印制版,没有化学腐蚀过程,既不会形成废液、废渣污染,也不会损失铝材。被消耗的仅仅是打印的墨水,成本优势明显,有可观的利润空间,且可以通过鼠标简便操作。”宋延林说,这是令他自豪的一点。
他永远都记得,有一期《时代周刊》的封面触目惊心:一只巨大的iphone手机,连接着一座冒着黑烟的工厂,用醒目的字体探讨这只“神器”为什么会选择“madeinchina”(中国制造),结论有二:一靠“廉价人力”,二靠“超级污染”。“中国留给世界的印象,一定要改一改了!事实证明,我们可以拿出领先、环保的绿色解决方案。”
再见,试验室!
纳米材料研究报告篇3
一腔报国激情,尽撒中国大地。他以旺盛的生命力,真正实现了生产力与科技研发的“无缝链接”。在纳米耐火材料这个平台上,他坚守科技创新的信念。他从小小的纳米中创造了巨大的价值,在科技创新的漫漫长路上,用严谨和勤奋诠释着一名科技企业家的责任和信念。他的信念如磐石般坚定,身躯如青松般挺拔,在纳米技术的浩瀚海洋中,他是一名勇猛的弄潮者。
他将知识投于实践创造财富,又在实践中获得真知奉献社会。在诸多实力候选人中,他成功当选为第9届中国时代新闻人物十大杰出成就奖”和“时代楷模•共和国经济建设十大功勋企业家”在过去的执着里他书写下成功,在未来的执着中,必将书写下中国纳米耐火材料行业新的辉煌!
创新是社会持续发展的不竭动力,创新是建设和谐社会的助推剂。作为“第一生产力”的科学技术承载着社会和谐发展的价值,是和谐社会系统运行的核心动力。其中高科材料的纳米创新是创新中最为艰难、最为复杂却也是最有意义的,不仅是理论视角的改变,还有学科的糅合,从而为社会的发展带来新的动力。然而,在这条道路上经历的苦难和磨砺却也是难以想象。我们又不得不提的是,纳米高科耐火材料的创新所带来的效益是巨大的,新的指导实践的方式,无疑要重新整合生产力,继而带来社会的变革。那么就让我们走近纳米耐材发明专利的获得者,太原高科耐火材料有限公司董事长,山西省耐火材料工程技术研究中心主任兼首席专家,中国节能协会玻璃窑炉专业委员会副主任委员,教授级高级工程师,耐火材料行业专家――高树森。
宝剑锋从磨砺出
梅花香自苦寒来
在改革开放的年代,他在中原拉起高科耐火材料的大旗;在出奇制胜的时期,他毅然决定成立自己的品牌,剑走偏锋,成就了耐火材料领域的一颗明星。标新立异,奇峰突起,风云岁月,年华沉积,连续多年绩效稳健增长的行业奇迹,高树森用科学技术造福社会!
太原高科耐火材料有限公司于1989年成立,成立之初只是一家简易的小型耐火材料厂,设备及实验条件相当简陋,在高董事长的带领下,经过几年的艰苦奋斗,企业取得了初步的发展。1992年经山西省高新技术委员会认定、国家太原高新技术开发区管委会批准,成立了太原高科耐火材料有限公司(简称太原高科)。
公司建立了耐火材料生产厂和专门的耐火材料技术研究中心,并被山西省科技厅确立为山西省耐火材料工程技术研究中心,成为山西省耐火材料行业唯一的部级高新技术企业,并承担山西省高端重点行业用耐火材料的技术研究与开发工作,先后研究开发出多种耐火材料高新技术产品,及时将研究成果转化为生产力,大大促进了企业的发展,同时为技术研究和自主创新提供了雄厚的资金支持,形成了生产与科研相互促进的良好局面。公司与国内多所研究院、高校形成产学研联盟,具备研究、开发、生产高技术特种耐火材料能力,形成了自主研发、自主创新和自我实现产业化的良性循环。经过二十年的发展,在实现了公司的管理升级和稳步、持续、快速发展的同时,确立了以“以科研为依托,市场为导向”的科技兴企的发展战略。
随着公司的不断发展,原有的生产能力远不能满足市场的需求,2005年公司在阳曲县投资8000余万元,建设了总占地面为150多亩的现代化工厂和企业技术研发中心,该项目被列为山西省“1311”重点工程、高科技产业化项目及山西重点引进关键科技开发项目。
新工厂于2006年竣工投入生产,特种高效不定形耐火材料年产能5.5万吨。该企业技术中心分别于2007年被山西省科技厅批准成为耐火材料行业工程技术研究中心,2009年被山西省认定为企业技术中心担负着耐火材料行业关键技术的研发和创新工作,并在自主创新方面取得多项重大创新成果。
目前,太原高科已通过了ISO9001―2000国际质量体系认证和ISO14001:2004环境管理体系认证,被山西省科委确定为“山西省科技先导型企业”、太原市科技局授予“太原市科技创新示范单位”、太原高新区授予“十佳技术创新项目企业”及“质量管理先进企业”、山西省认定为企业技术中心。最近,中国耐火材料行业协会授予太原高科耐火材料有限公司、山西省耐火材料工程技术研究中心“行业纳米材料产业化示范基地”的称号。
实践证明,坚持科学发展观,坚持走自主研发和自主创新的道路是太原高科发展的根本。通过多年的努力,太原高科走出了自主研发、自主创新、自主生产科研成果的路子,由“中国制造”变为“中国创造”,而且实际效果十分突出。同时也从一个侧面说明,我国科技体制改革中建立以企业为主体、产学研结合的技术创新体系,并将其作为全面推进国家创新体系建设的突破口,只有以企业为主体才能坚持技术创新的市场导向,有效整合产学研的力量,确实增强国家竞争力,以企业为主体的创新机制,对科研成果迅速转化为生产力具有重要的推动作用。
百卉争妍丰华硕果
纳米科技和纳米材料是20世纪80年代末期刚刚诞生并正在崛起的高新技术,是21世纪最富有活力的高新技术,对各个领域将产生深远影响的高新技术,其研究内容涉及现代科技的广阔领域,世界各国都对纳米技术和纳米材料给予了极大关注,具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地开发出来,开始形成一个新型的纳米功能产品的产业领域,从而使得许多传统产业正在发生一场新的技术革命。
自2008年9月至今,在两年多的时间里,发明人高树森共申报了六项纳米耐火材料发明专利项目,前五项发明专利均已公布,并经有关部门严格筛选后评定,被列为年度国家重点发明专利项目,还被国家知识产权局出版社编入发明人年鉴中,前两项发明专利获第九届香港国际发明博览会金奖,又获第十二届中国北京国际科技产业博览会第三届中国自主创新杰出贡献奖。2010年这些纳米发明专利在第十三届中国北京国际科技产业博览会上又获“中国自主创新杰出贡献奖”,并且高董事长在“中国高新企业发展国际论坛”上做了《关于发展纳米科技和纳米耐火材料自主创新及其产业化》的重要报告。六项纳米发明专利项目分别是:
纳米耐火材料发明专利之一
纳米复合氧化物陶瓷结合铝-尖晶石耐火浇注料及其制备方法(公开号:CN101397212A)
该发明专利成果开创了纳米耐火材料新领域,解决以往耐火材料在技术性能方面存在的问题,完全证实纳米技术和纳米材料所具有的功能特性在纳米耐火浇注料中能够充分显示出来,全面提升和改善耐火浇注料的组织结构,特别是显微结构以及各项性能指标,又具有特殊的抗渣侵蚀性和抗渣渗透性、高温结构稳定性以及耐高温性能等。
纳米耐火材料发明专利之二
纳米Al2O3薄膜包裹的碳-铝尖晶石耐火浇注料及其制备方法(公开号:CN101417884A)
本发明的碳-铝尖晶石耐火浇注料的最突出特点是组织结构致密,显微结构明显改善,纳米结构基质得以形成。另一方面,在抗钢水、熔渣侵蚀性、抗渣渗透性、抗热震性、高温体积稳定性、高温蠕变性等方面也显示出优异的性能,这些特性为它在炼钢二次精炼炉中成功地使用奠定了良好的基础。
纳米耐火材料发明专利之三
纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质耐火浇注料及其制备方法(公开号:CN101544505A)
本发明新型纳米耐火浇注料主要优点有以下方面:一是应用纳米技术和纳米材料在耐火材料领域中得到成功的应用,制成了无团聚、分散性好的纳米尖晶石-镁质耐火浇注料;二是材质选择、加工工艺先进合理;三是生产成本相对较低,经济适应性强;四是无粉尘,无排放有害气体,特别是无纳米粉体的污染,是真正的绿色产品;五是实施套修补使残衬得到充分利用,适合于循环经济发展要求。鉴于以上优点本发明的纳米耐火浇注料,对炼钢工业二次精炼用耐火材料的发展起到了重要的推动作用。
纳米耐火材料发明专利之四
纳米Al2O3、MgO薄膜包裹的碳-尖晶石镁质耐火浇注料及其制备方法(公开号:CN101555153A)
本发明在整体二次精炼钢包实际使用中也取得了成功的经验,它在80t钢包渣线部位使用,采用RH进行精炼处理,渣线使用寿命达90炉次以上;在195tLF精炼炉上部包壁中使用也取得了优异的使用效果;采用本发明的碳-尖晶石镁质耐火浇注料制成大型预制构件,在195t精炼钢包最苛刻的冲击区部位也显示出较高的耐用性,这就为二次精炼整体钢包应用与发展提供了方向,也为二次精炼钢包整体化奠定了良好的基础。
纳米耐火材料发明专利之五
纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质耐火浇注料及其制备方法(公开号:CN101767999A)
本发明浇注料的创新点在材质的选择,是在传统用Al2O3-SiC-C质出铁沟浇注料中引用了镁铝尖晶石的成分,这种尖晶石相不是采用预合成尖晶石,而是以加入Al2O3和MgO为原始成分,通过原位合成反应生成纳米二次合成尖晶石,使这种新型纳米浇注料的结构、性能和耐用性等方面发生根本改变,使其纳米结构基质得以形成,抗渣铁侵蚀性和抗渗透性同时得到改善,耐用性显著提高。另外,由于在生成二次尖晶石时,伴随着微膨胀,所以在约束下发生致密化,可使浇注料的抗渣铁侵蚀性和抗渗透性进一步同时显著提高,这就为这种浇注料在高炉出铁沟中成功的制造和使用奠定了坚实的基础。
纳米耐火材料发明专利之六
纳米SiO2、CaO复合陶瓷结合硅质耐火浇注料及其制备方法(申请号:201010165554.9)
本发明采用纳米技术和纳米材料,开创了一种具有特殊优异的耐高温性能、耐火度和荷重软化点、抗高温蠕变性、抗炸裂性、侵蚀性以及高耐用性的纳米SiO2、CaO复合陶瓷结合硅质耐火浇注料,以满足和适应现代炼铁高炉附属的高风温热风炉、玻璃熔窑上部结构、炼焦炉等使用的发展需求;另一方面硅质耐火浇注料是酸性耐火材料的典型代表,增加耐火浇注料主要品种特别是酸性或碱性耐火浇注料扩大浇注料使用范围,增加总体不定形耐火材料产量。
纳米耐火材料系列发明专利的公布,是纳米技术和纳米材料在耐火材料领域中成功应用的重要标志,也是纳米技术和纳米材料在传统产业中自主研发、自主创新的重要发展方向,对钢铁等高温工业的发展和高新技术的应用,作出了重要贡献。同时,发展纳米科技是转变经济发展方式,实现可持续发展的关键。具有战略性的纳米新兴产业是新兴科技、新兴产业的深度融合,代表着科技创新的方向,也代表产业发展的方向。使纳米战略性新兴产业尽早成为国民经济的先导产业和支柱产业,要大力推动自主创新,着力突破制约经济社会发展的关键技术问题。加快推进自主创新,紧紧抓住新一轮世界科技革命带来的战略机遇,更加注重创新,加快自主创新能力,加快科技成果向现实生产力转化,加强科技体制改革,加快建设宏大的创新型科技人才队伍,谋求经济增长与发展主动权,形成长期竞争优势,为加快经济发展方式转变提供强有力的科技支撑。
该系列纳米耐火材料研究项目充分利用山西省资源优势生产特种高效耐火材料,为山西省耐火材料资源的利用和行业发展提供了新思路。太原高科纳米耐火材料的研究及其发明专利成果,大大推动了我国纳米技术、纳米材料的进步与发展,为耐火材料的发展开辟了一片新天地,也为开发更长寿、更节能、无污染功能化的新型绿色耐火材料带来了发展空间。为了进一步深入发展纳米技术在耐火材料领域中的应用研究,使纳米技术在耐火材料领域中得到更广泛的应用,太原高科将研究开发更多更实用的纳米耐火材料发明专利成果,以满足钢铁等高温工业发展需求,也为钢铁等高温工业技术的实施与发展提供了最佳服务。
独树一帜开创纳米
耐火材料产业新领域
转变经济发展方式是事关经济发展质量和效益、事关我国经济的国际竞争力和抵御风险能力、事关经济可持续发展和经济社会协调发展的战略问题,也是经济领域的又一场深刻变革,更是决定中国现代化命运的重大转折。
纳米科技和纳米材料是21世纪最有发展前景的高新技术,它对国家经济发展、经济转型、传统经济改造、自主创新等均具有重要意义。为此,建立纳米耐火材料产业化示范基地,对当前和今后耐火材料工业和钢铁等高温工业的发展是非常有意义的,而且也是十分紧迫和刻不容缓的。此外,国际间纳米技术和纳米材料的竞争更多体现在工业生产的纳米产品上,太原高科对纳米科技和纳米耐火材料的研究开发和自主创新作了长期的艰苦努力,并取得多项发明专利成果,并且对纳米科技和纳米耐火材料继续开展深入研究和产业化基地建设将会取得更多、更大进展,为我国纳米科技发展作出贡献。
我们开发的新型纳米耐火浇注料及其整体浇注技术,大幅度提高浇注的整体炉衬的使用寿命,节省资源,且节能环保,生产成本相对较低,经济适应性强,无粉尘,无排放有害气体,特别是无纳米粉体的污染,是真正的绿色耐火材料,具有显著的经济效益和社会效益,已达到国际先进水平。该系列项目的大力推广也将为我国丰富的耐火矿产资源在现代耐火材料应用提供广阔的发展前景,将资源变为产品,推动市场效益,可带动资源产业的更快发展。
“纳米中国耐材”
战略推动经济发展模式转型
随着纳米技术的研究与发展,使其具有特异功能的各种纳米材料的制备成为现实与可能,作为纳米技术基础的纳米材料率先得到发展与应用,由纳米材料制备的功能性产品,也不断地开发出来,开始形成一个新型的纳米功能性产品的产业领域。我们在纳米耐火材料的研发和创新中,在将近两年的时间里,先后发明了六项纳米耐火材料专利项目,并且连续两届在中国北京国际科技产业博览会上获“中国自主创新杰出贡献奖”,引起媒体广泛观注,新浪财经、中国研磨网等媒体给予了报导。
实行“纳米中国耐材”战略计划,催生新型经济社会发展模式。要在高新技术产业化大潮中占据有利先机,需要从技术创新、产业创新、产业集群耦合3个维度,探索原创技术产业催生机制、技术创新扩散机制和高新技术与传统产业的融合机制,实现知识产业集群、原创产业集群和以新技术武装的传统产业集群之间耦合与升级,将国家纳米技术建设成为国家原创产业的试验基地,高端制造业、技术、产业创新的典范。
纳米材料研究报告篇4
在出国之前,王铀已经是北京航天航空大学教授,并已经取得了多项具有创见性的科研成果。1994年,王铀获得了前往加拿大马尼托巴大学任访问教授的机会。此后,他先后在美国和加拿大学习工作。在国外的10年里,正是凭借着自己的勤奋和执著,王铀取得了学术上的巨大突破。在美期间,他研发出一种高性能纳米结构热喷涂陶瓷涂层。与传统陶瓷涂层相比,该纳米陶瓷涂层具有高得多的韧性、结合强度、抗热震性和耐磨性。作为一种绿色环保技术,这种纳米陶瓷涂层不仅可以替代有污染的电镀铬方法,而且可以大幅度提高材料的表面性能,大幅度提高机械装备的寿命,大大降低了能耗,因而用途广泛,可广泛应用于军用和民用机械设备零件上。2000年,这种纳米结构热喷涂陶瓷涂层技术通过了美国海军技术标准1687A的检测,获得了美国海军应用证书,被美国海军称为一项革命性的先进技术。2001年,该技术获得被美国媒体誉为“应用技术奥斯卡奖”和“研究发明诺贝尔奖”的“世界研究开发百项奖”和美国国防部“军民两用研究开发技术奖”。
国外旅居10年,王铀曾在给母校哈工大校领导的信中写道:“祖国装在心,母校常入梦。”自从王铀的高性能纳米结构热喷涂陶瓷涂层技术被美国海军应用的那一天起,他就一心要把这一技术移植回自己的祖国,用于中国的国防装备与工业现代化建设。为了实现这个报国强军梦,2004年10月,王铀暂别妻儿,毅然回国。
回国后,王铀一方面积极推广自己的技术,一方面进一步创新。2006年11月30日,中国船舶重工集团公司规划发展部在西安主持召开了“高性能精细纳米陶瓷喷涂材料研究”项目验收暨技术鉴定会。项目验收暨鉴定委员会审阅了全部技术文件,评审认为这项技术取得了多项创新成果,成功解决了陶瓷涂层韧性低和抗热震能力差的两大难题,主要性能达到了世界领先水平,其中纳米结构氧化铝/氧化钛陶瓷涂层比目前广泛使用的商用美科130涂层有着高出3~10倍的耐磨性、高出1倍的抗蚀性,高出1倍左右的断裂韧性、高出1~2倍的结合强度和抗热震性能,高出5~10倍的疲劳抗力。
纳米材料研究报告篇5
关键词:纳米材料;纳米安全性;科学发展
一、纳米技术与纳米材料简介
纳米(nano)本是一个长度单位,1纳米为10-9米,即十亿分之一米。大部分原子和分子的尺寸约为0.1-100nm,当很多宏观物质的尺度降低到纳米量级时会表现出很多与我们平时所观察到的不同的现象,所以研究材料在0.1-100nm尺度范围内的性质和应用就形成了当前非常热门的纳米科学与技术。
90年代末,纳米技术在我国也有着快速发展。纳米科技与以往的科技领域有所不同,它涉及物理学、化学、生物学和电子学等科学技术领域,并引发核派生了纳米物理学、纳米化学、纳米生物学和纳米材料学等诸多新领域。其中纳米材料学是研究纳米材料的设计、制备、性能和应用的一门纳米应用科学[1]。如纳米尺度的结构材料能在不改变物质化学成分的情况下,通过调节器纳米尺寸的大小来控制材料的基本性质,如熔点、磁性、强度和颜色等。纳米材料是纳米科技的基础,只有提高纳米材料的性能才能实现需要的功能。所以,纳米材料在整个纳米产业中占有很大的市场份额。
二、纳米材料的健康效应
1、正面效应:纳米医学
纳米材料已经或正在走进我们生活的诸多方面,如生物医学领域的纳米制药和疾病监测的方面。因为纳米材料尺度小、活性强,用纳米材料制成的药物可以准确的杀死病变细胞不会对健康细胞产生影响,这是常规药物所不能实现的。纳米生物芯片技术将传统的生物样品检测实验室集成到一个芯片上来,大大增强了检测速度和精度。
纳米材料技术与生物技术结合为生物医学领域带来了全新的视野,纳米材料也医药学方面和生物芯片方面取得了显著的成绩。随着纳米材料在生物医学领域更为广泛的应用,疾病诊断、临床治疗等将会变得更有效率,治疗费用也会随着纳米技术的不断成熟又逐步降低,从而我们的生命健康保障将会得到很大提高。
2、负面效应:纳米毒理学
尽管纳米材料在生物医学领域产生的革命性的变化,但是纳米材料的安全性问题同时也非常值得我们关注。任何一门技术都具有双面性,即有有利的一面也会存在有害的一面,纳米材料也不例外。
对纳米材料安全性的研究工作最早的是英国牛津大学和蒙特利尔大学的科学家在1997年发现防晒霜中的TiO2和ZnO纳米颗粒会破坏皮肤细胞的DNA。直到2003年3月,美国化学会年会上的有关纳米颗粒对生物可能存在危害的报告才引起了世界对纳米材料安全性的广泛关注。纽约罗切斯特大学的研究者让大鼠在含有粒径为20nm的聚四氟乙烯(特氟龙)颗粒的空气中生活15分钟,大多数实验大鼠在随后4小时内死亡;而另一组生活在含120nm特氟龙颗粒的空气中的大鼠,则安然无恙[3]。
三、纳米材料负面效应的解决方法
1、各国政府的对策和行动
20世纪末才发展起来的纳米科技正在逐步完善,已经应用于关系国家安全和国民经济的许多重要领域。21世纪是科技迅速发展的时代,纳米材料已经应用在众多国防和军事领域,如美国B-2隐形轰炸机的表面涂层材料,新型的特种兵作战服。而且,纳米材料作为其他行业的基础,为传统的制造业带来了新的生机,纳米材料有着巨大的市场前景。纳米材料标准化方面引起了纳米研究大国的激烈竞争,纳米材料的安全性问题正是竞争的交点。为了率先占领纳米科技的未来市场制定纳米材料标准,纳米材料的安全性问题更显得非常重要。
2、结合我国国情的策略
我国的纳米材料科技研究起步较早,与国际领先水平差距不大。纳米材料在化妆品、涂料、纺织业、汽车工业和半导体产业都有着很好的市场前景。就我国纳米材料市场来看,其主要产品为金属纳米颗粒材料、纳米氧化物、纳米碳化物和半导体纳米材料,如银、铜和铁等纳米颗粒材料,纳米氧化锌,碳纳米管和纳米钛酸钡等。2007年出版了纳米毒理学领域第一本专著《Nanotoxicology》。此外,北京大学化学生物学系、北京大学医学部、中国科学院武汉分院、中国医学科学院、中国科学院化学所、军事医学科学院等也都成立的纳米材料安全性方面的实验室开展研究工作。白春礼院士在第243次香山科学会议上指出:"任何技术都是有两面性的,纳米技术也可能同样是把双刃剑。正确的态度是吸取20世纪科学技术发展的经验和教训,以科学发展观为指导,在发展纳米技术的同时,同步开展其安全性的研究,使纳米技术有可能成为第一个在其可能产生负面效应之前就已经过认真研究,引起广泛重视,并最终能安全造福人类的新技术"[3]。
四、科学发展营造绿色纳米世界
纳米材料研究和产业的发展要符合科学发展观的内容,要坚持以人为本,全面发展和可持续性发展。纳米材料安全性的题不仅关系到产业的发展和国家的利益,更关系到人民群众的生命健康。新兴的纳米材料科技要为人民所用,而不是要危害人民的健康。纳米材料产业的发展必将成为我国经济的新的增长点,也会带动制造业、国防产业等领域的发展。健康、绿色的纳米材料是纳米材料科学发展的最基本前提。坚持纳米材料的科学发展观,促进纳米材料、人与社会的和谐发展,实现经济发展、科技发展和人口、资源、环境的协调发展[9]。
当前,传统行业里的"中国制成"已经在世界范围内站住脚,但是在当前世界的利润分配中,制造环节的利润越来越低而且产生巨大的资源消耗和环境破坏,取而代之的是研发和服务环节的利润所占比例越来越大,这就是著名的"微笑曲线"。
我国著名科学家钱学森曾说:"纳米和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将是21世纪又一次产业革命[1]。"纳米材料的安全性问题是困扰纳米科技进一步走进人生生活的关键,只有解决好纳米技术也人类发展的关系,营造一个绿色纳米科技发展环境,人类才能真正的享受到纳米科技的福音。
参考文献:
[1]徐云龙,赵崇军,钱秀珍.纳米材料科学概论[M].上海:华东理工大学出版社,2008:21.
[2]贾宝贤,李文卓.微纳米科学技术导论[M].北京:化学工业出版社,2007:3.
[3]赵宇亮,赵峰,叶昶.纳米尺度物质的生物环境效应与纳米安全性[J].中国基础科学科学前沿,2005:19-23.
[4]赵宇亮,白春礼.纳米安全性:纳米材料的安全效应[J].世界科学技术,2005,(4).
[5]汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳.纳米材料生物效应及其毒理学研究进展[J].中国科学,2005,(1).
[6]Y.Song,X.Li,X.Du.Exposuretonamoparticlesisrelatedtopleuraleffusion,pulmonaryfibrosisandgranuloma[J].EurRespir,2009,34:559-567.
[7]ServiceRF.Nanomaterialsshowsignsoftoxicity[J].Science,2003,300,(11):243.
[8]张立德.我国纳米材料研究的现状[J].中国粉体技术,2001,(5).
纳米材料研究报告篇6
摘要:《高分子纳米材料》是我校高分子材料专业开设的一门专业选修课。在分析了课程的目的、特点和教学存在问题的基础上,详细阐述了运用视频课程、颠倒课堂、电子产品辅助教学等多元化教学手段,实现本课程的教学改革。
关键词:高分子纳米材;教学改革;颠倒课堂
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2016)49-0080-03
一、引言
纳米科学与技术是20世纪80年代末期兴起的,经过三十多年的发展,纳米技术已逐步迈出实验室走向市场,其商业化应用在全球范围内迅速展开。全世界都认识到,纳米技术将引起新一轮的产业变革,未来拥有并掌握纳米技术及其应用的国家将更具备核心竞争力。纳米材料科学是涉及到凝聚态物理、胶体化学以及材料的表面和界面等多门学科的交叉科学,而高分子纳米材料同样是涉及高度交叉的综合性学。纳米结构的聚合物材料由于尺寸效应、表面效应、量子效应和宏观量子隧道效应使材料具有独特的性能而在机械、光、电、磁、微处理器件、药物控释、环境保护、纳米反应器及生物化学等方面具有广阔的应用前景[1],从而掀起了对纳米结构聚合物材料研究的热潮。在纳米科技迅速发展的大背景下,很多高校的材料专业开设了“纳米材料”或“纳米技术”相关课程[2-3]。但据作者所知,江南大学是少数对高分子材料专业开设《高分子纳米材料》课程的高校之一,笔者结合自己的授课经验以及《高分子纳米材料》课程的特点,从其现在面临的题及采用多元化教学手段等方面研究探索该课程的教学改革。
二、课程特点及现有问题
《高分子纳米材料》课程介绍高分子纳米材料的独特性能、制备方法,并将其和学科发展前沿联系起来,主要教学内容侧重如下几个方面:(1)高分子纳米材料的基础知识(包括基本效应、特殊性质);(2)高分子纳米材料的制备方法;(3)高分子纳米材料的表征方法;(4)特殊功能的纳米材料(如高分子纳米复合材料、高分子纳米涂料、生物医用高分子纳米材料、光/电/磁性高分子纳米材料、超疏水/疏油(双疏)性高分子纳米材料);(5)高分子纳米材料的应用及生物安全性问题。涉及较多的应用研究型内容、既有理论又有实践,强调理论和实践的结合,且课程的知识点较多,知识的交叉性强。
本课程的开设旨在为具有高分子材料与工程学科背景的学生增加纳米科学及技术的基础知识。通过学习本课程,学生对高分子纳米材料的发展趋势和研究热点有了很深的理解,涉猎了未来高分子纳米材料的重大学科领域。学生的创新思维以及能力得到了不同程度的提升。
作为典型的交叉学科,《高分子纳米材料》课程的教学具有一定的难度。首先,课程内容涉及知识面广,该课程主要解决以下问题:“什么是纳米技术”、“怎么制备高分子纳米材料”、“高分子纳米材料的特殊功能”等,而特殊功能性就包括了光/电/磁性、pH/温度响应性、超双疏性等多部分内容。因此难于在有限的课堂教学时间内全面系统地深入介绍学科内容,容易导致没有节制的填鸭式教学,使学生无法在短时间内消化,影响后续课程的学习。如何准确把握课程的基础理论框架,引导学生开展自主学习,是授课教师在设计课程内容时需要解决的重要问题。其次,课程内容前沿性强,知识更新速度快,研究热点不断变化,新的研究方向与研究成果层出不穷。这就需要授课教师投入更多的时间和精力纵览多个学科的发展,以便能够站在学科的前沿引领学生去认知和创新性思考。再次,内容抽象,尽管纳米材料这门课较新,学生们兴趣较高,但在讲授过程中缺乏实物,无法为学生带来更直观的感觉,从而影响了学生进行独立的思考、个性思维的发展和创新能力的培养。
三、课程教学手段改革
为提高课堂教学质量,提高学生的综合能力,以使学生成为适应社会发展需要的复合型人才,教师必须转变教学理念,激发学生的学习兴趣、主动性、积极性[4]。
(一)课堂多样化教学法
传统教学方式中,老师在课堂上满堂灌,使学生缺乏思考,觉得学习枯燥无味,丧失学习激情。因此,应结合不同的教学内容,授课教师运用“提问式”、“讨论式”等方式方法结合起来讲授,注重与学生的互动。对于理论性较强的内容,多采用图片形式展示,如结合PhotoShop、AutoCAD等绘图软件制作一些多媒体教学课件,根据需要进行拆分和组合讲解,增强学生的直观认识,达到传统教学手段无可达到的演示效果。同时,注重语言的深入浅出,或理论联系实际,如在介绍超双疏高分子纳米材料部分课程时,从自然界中的荷叶效应开始解释,说明荷叶结构与性能关系,从而引入超双疏高分子纳米材料,在快速理解的同时,激发学生的学习热情和投身其研究的兴趣。
视频课件内容丰富、信息量大,教师可以制作或下载相关教学视频,引入更多与课程相关的新知识、新技术和新成果。如介绍生物医用高分子纳米材料在药物缓释领域的应用时,纳米材料怎样进入体内病变部位,怎么靶向、释放药物,达到治疗的效果,如果没有视频,学生很难理解、很难想象;而通过视频将其原理、过程更直观、更形象的展现在学生面前,让学生更容易、更有兴趣地去学习并掌握知识点。
另外,对于相关制备技术与创新应用方面,则要重视启发――探究式的教学,注重理论联系实际以及学生创新思维和能力的培养,比如对于高分子纳米材料的测试表征手段的教学,教师可以结合实验教学,带领学生参观所学习的相关仪器设备,动手操作仪器,这样既可以提高学生的学习兴趣,又可以巩固所学的理论知识,其实践能力也可以得到培养。
(二)颠倒课堂教学法
颠倒课堂教学法坚持“以学生为中心”的教学理念,借助于信息技术在时空上颠倒传统教学中教师的知识传授与学生的知识内化过程,让学生可以在家或课外通过观看教学教案、教学视频中教师的讲解,自主完成对新知识的学习,课堂上教师通过设计一些真实的问题情境,组织学生协作探究解决问题的方法,而学生可以通过与教师、同伴的交流讨论,实现对知识的吸收与深化[5]。颠倒课堂在国外已经取得了较好的效果,而在国内还鲜少尝试。
在《高分子纳米材料》课程中,可以根据需要有选择的对部分教学内容进行颠倒课堂。我们根据前期对学生的调查,学生们一致对生物医用高分子纳米材料非常感兴趣,有很多的问题想了解,如果还是以传统法教学,则无法较好的和他们讨论、回答他们问题,无法满足他们的好奇心。因而,在进行这部分内容教学时,可以采用颠倒课堂的方式。首先在班级的微信群或QQ群里上传教学PPT及相关视频,学生通过学习后,对生物医用高分子纳米材料的发展概况、基本知识、结构设计有了一定的了解;在课堂上,学生先提出问题,分组交流讨论、教师参与讨论;教师最后再补充知识、总结学生问题的基础上,再设计问题让学生深入思考,解决问题。
(三)教学与科学研究复合的教学法
为培养学生应用所学的知识解决实际问题的能力,教师可以将教学与科学研究进行复合。如结合教师们的课题,把最新的科研成果有机地融入课堂教学中,为学生讲解具体的高分子纳米材料制备及性能研究,并让其参与其中,将研究的样品实际展示给学生,调动学生兴趣,突出高分子纳米材料的趣味性、理论性、科学研究性和前瞻性,并加强学生的自主创新意识和科研能力。
另外,邀请国内外高分子纳米材料专家做专题报告和前沿讲座,使学生能够及时了解前沿技术与l展动态;结合教学内容,提出本学科的研究热点问题,与课堂讨论相结合,不仅增强了师生间的互动、活跃了课堂氛围。
(四)借助智能电子产品建立学习平台
21世纪以来,各类高大上的电子产品,如iPad、手机等已成为年轻人须臾不可离的随身之物,这类电子产品极大的分散了学生上课的注意力及降低了学生对学习的兴趣和主动性,因而一直不被教师、家长看好,将之拒于学校与课堂大门之外。然而,随着数字校园向智慧校园的迈进,手机的这种应用及趋势只会越来越频繁,全面禁止大学生在教学过程中接触手机只会适得其反。因此,应顺应学生的心意,改革和完善现行教学方式,在课堂教学、课后练习中有效利用智能电子产品,使其成为辅助教学的良好工具[6]。
在《高分子纳米材料》课程教学中,我们建立了班级QQ群、微信群,通过群平台进行信息、专题讨论、资源共享等,有利于及时消息、正确引导学生、掌握学生动态。教师对根据学生的学习能力、反馈信息,提供个性化的教学要求和实施目标。
微信公众号平台经常相关的知识、发展动向、微课等内容,这是一个可以让学生在课后补充学习的平台。因而,要求学生关注如“纳米人”、“高分子科学前沿”等公众号,认真学习和掌握高分子纳米材料的发展动向。同时,智能手机中的一些APP也对我们课程有很好的帮助,如ACSMobile、RSCMobile等,旗下杂志一有新的研究进展及时更新至APP中,让学生更及时了解高分子纳米材料的研究动态与最新成果。
四、结束语
作为本世纪最瞩目的前沿科技研究热点之一,高分子纳米材料也取得了长足发展,很多新的高分子纳米材料产品如高分子纳米涂层、高分子复合材料、药物缓释纳米材料等从实验室走向实际应用,成为保障人类生活和工业发展的重要基础。《高分子纳米材料》课程教学内容的选择要充分考虑到广度和深度的统一、基础和前沿的兼顾、新旧内容的衔接、理论联系实际、巧用电子产品的资源等多个方面。在整个教学过程中,学习者表现较积极,能主动发言并积极参与讨论,各个小组的汇报效果也较好,能够激发学习者的学习兴趣,培养学生创新意识及创新能力。
参考文献:
[1]VikasMittal.AdvancedPolymerNanoparticles,SynthesisandSurfaceModifications.2011,CRCPress,Taylor&FrancisGroups.
[2]刘玉芹,杜高翔,杨静.《纳米材料》课程教学内容与教学方法探讨[J].科技教育创新,2008(3):210-211.
[3]李本侠,王艳芬,胡路阳.浅论“纳米材料与纳米技术”[J].课程教学研究.2014,40(1):72-74.
[4]白绘宇,罗静,倪才华,东为富,刘晓亚,陈明清.高分子流变学教学的探讨-借鉴美国大学高分子流变学课程教学经验[J].2015,(7):89-93