土壤重金属污染的来源范文篇1

随着全球水资源日趋紧张,污水灌溉已被许多国家作为重要的灌溉水源。但污水也是我国城镇近郊重要的灌溉水源之一。我国污灌面积90%以上集中在北方水资源严重短缺的黄、淮、海、辽河流域,5大污灌区为北京、天津武宝宁、辽宁沈抚、山西惠明和新疆石河子污灌区[1]。美国污水灌溉区域主要集中在弗洛里达州和加利福尼亚州,这2个州是最早建筑浇灌管道利用再生水进行灌溉的地区。加拿大经历了近10年的干旱期之后,污水灌溉在全国范围内引起了广泛的关注,很多州已经开始建设污水灌溉工程。欧洲基金组织研究中显示“欧洲和很多地中海国家在这方面的发展相对滞后,主要是由于这种污水利用的观念被政府和公众完全接受还有一定的困难”。2010年以色列80%以上的污水处理后用作农田灌溉和其他社会用水。西班牙全国20%的污水处理后重新利用[2]。污水灌溉是重要的灌溉补充水源,又是污水资源化的重要方式,同时污水中的氮、磷、钾等营养元素又为作物提供必不可少的养分;但是对于环保而言,污水中的有毒物质不仅污染环境还会在土壤和作物中积累,通过食物链富集,最终危害人类健康。近年来,重金属对土壤-植物系统的污染问题逐渐成为人们关注的焦点。

1土壤中重金属的来源

(1)随着大气沉降进入土壤的重金属。大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘,除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。(2)随固体废弃物进入土壤的重金属。固体废弃物种类繁多,成分复杂,最主要的有工矿业和工业固体废弃物污染,这类废弃物在堆放和处理过程中,由于日晒、雨淋、水洗重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。由于固体废弃物直接或通过加工作为肥料施入土壤,造成重金属污染。(3)随农用物资进入土壤的重金属。农药、化肥和地膜是重要的农用物资,对农业生产的发展起着重大的推动作用,但长期不合理使用,也可以导致土壤重金属污染。(4)随污水进入土壤的重金属。利用污水灌溉是现代农业灌溉的重要技术之一,主要是把污水作为灌溉水源利用。污水按来源和数量可分为城市生活污水、石油化工污水、工业矿山污水和城市混合污水等。生活污水中重金属含量很少,但是,由于我国工业迅速发展,工矿企业污水未经分流处理而排入地下水道与生活污水混合排放,从而在污灌区土壤重金属含量逐年增加。这是重金属进入土壤中的主要来源。重金属元素进入土壤-植物系统,不会被分解转化,只能在不同介质之间完成吸收、累积、转移等过程。重金属在从一种介质向另一种介质的迁移转化过程中,常常伴有重金属元素在介质中的积累和残留。污灌区土壤中的重金属随植物生长被吸收并在植物体内积累,积累浓度超过一定限值就会对农作物产生危害,随着污水灌溉时间的延长,重金属对作物的危害越来越严重。刘登义等[3]研究表明,经污水浇灌的小麦幼苗与对照组相比,植株矮小,根短,根数目少,茎、叶、根的干重、鲜重和可溶性蛋白含量均明显减少,并出现叶尖枯黄,叶片色素含量下降。郑春霞等[4]研究表明,当铅浓度为1000μg/L时,玉米苗在10天之内全部死亡。进入农作物中的重金属会随着食物链进入人体,最终对人体造成危害。因此,重金属在土壤中的转移、转化是研究其对土壤污染、作物危害的重要方面。

2重金属在土壤中的形态、迁移、转化特点

重金属是土壤环境中一类具有潜在危害的污染物。重金属在土壤中不易随水淋滤,不能被微生物分解;相反地,生物体可以富集重金属,使其在环境中积累,在积累初期可能不易觉察,一旦危害作用较明显地表现出来就难以消除[5]。自20世纪50年代前后日本出现“水俣病”和“骨痛病”,并且查明这些病分别是由汞和镉污染所引起的“公害病”以后,重金属的环境污染问题才受到人们的极大关注。重金属在环境中的赋存形态主要有水溶态、交换态、碳酸盐结合态、铁锰氧化物结合态、有机结合态和残留态。由于水溶态一般含量较低,又不容易与交换态区分,常将水溶态合并到交换态之中。朱桂芬等[6]研究得出土壤中Cd、Cr主要以铁-锰氧化物结合态存在,Ni、Zn主要以残留态存在,Cu主要以有机结合态存在。王玉红[7]通过Tessier形态分析结果表明,元素Cu的形态分布规律为:残余态>铁锰氧化物结合态>碳酸盐结合态>有机物结合态>可交换态;Zn:残余态>铁锰氧化物结合态>有机物结合态>碳酸盐结合态>可交换态;Cr:残余态>铁锰氧化物结合态>有机物结合态>碳酸盐结合态>可交换态;Cd:残余态>铁锰氧化物结合态>碳酸盐结合态>可交换态>有机物结合态;Pb和Ni:残余态>铁锰氧化物结合态>有机物结合态>碳酸盐结合态>可交换态。在不同环境条件下,由于土壤类型、土地利用方式(水田、旱地、果园、牧场、林地等)、土壤pH值、Eh、土壤有机无机胶体的含量等因素的差异,重金属元素赋存形态的不同。重金属在环境中的迁移转化,几乎包括水体中的所有物理化学过程,而且具有可逆性,无论是形态转化或物相转化,都能随环境条件变化。因此,沉积的可以再溶解,氧化的可以再还原,吸附的可以再解吸,各种形态存在于动态平衡中。重金属通过物理迁移、化学迁移、物理化学迁移和生物迁移等方式在土壤-植物体系中累积、迁移。该过程一般取决于重金属在土壤中的存在形态、含量以及植物种类和环境条件变化等因素。重金属的毒性作用通常并不单纯的是剂量与效应的关系,其进入土壤环境后的活性高低更大程度上取决于其化学形态即价态、化合态、结合态和结构状态4个方面,也就是指一种元素在环境中以某种离子或分子存在的实际形式,有可能表现出不同的生物毒性和环境行为[8]。通常情况下,重金属进入土壤中后很大一部分是被土壤通过静电和络合作用吸附,还有少部分残留于土壤溶液中,两者处于吸持和解析的动态平衡中,土壤溶液中重金属含量的高低直接影响作物的吸收量,以动态平衡为主要界面迁移行为是控制重金属在土壤-植物系统中转化迁移的重要机制。

3污水灌溉对土壤重金属含量的影响

不合理的污水灌溉会使重金属对土壤的毒害作用增强,尤其是长期污水灌溉会增加土壤中重金属的积累,灌溉污水进入土壤一方面直接增加土壤溶液中重金属的含量,另一方面通过螯合作用和酸化作用增加难溶态重金属的溶解度[9]。赵庆良等[10]在不同水质(3级处理水、2级处理水、污水、清水)、相同土壤重金属起始含量的试验区对农作物进行处理,结果发现对于黄瓜和白菜生长期较短的作物,灌溉水量较少,植物本身还要吸收一部分,因此在土壤中残留较少;对于玉米生长期较长,浇水量较多,长期灌溉土壤中重金属的累积规律为:污水>2级水>3级水>清水。姜勇等[11]对农田污灌区的污水和土壤监测结果表明污灌可不同程度污染农田生态环境,若灌溉不当则造成农田土壤重金属的积累,破坏土壤内部及土壤与其他系统间的生态平衡。同时用污水和污土进行了水稻灌溉盆栽实验,设污土污灌、污土清灌、清土污灌和清土清灌4个处理。其中污水和污土中重金属含量均超出国家标准,结果表明,各处理较清土清灌对秧苗长势均产生一定影响,以污土处理较为严重,污土清灌处理秧苗长势有好转,清土污灌对秧苗生长影响相对较小,表明洁净土壤具有较强的缓冲能力,污水污灌处理秧苗生长期较短。由该试验可以推想,重金属对土壤的污染作用的来源主要有2种方式:一是土壤本身存在的重金属即土壤起始含量;二是外来重金属,对于大多数农田土壤而言这部分重金属主要来自灌溉水。两者对土壤重金属含量的影响主要可以从以下3种情况分析。

第1种情况,土壤本身重金属含量较低而灌溉水中重金属的浓度较高。首先,灌溉水会使土壤积累重金属,由于土壤本身具有一定的缓存能力,一方面可以通过吸附或络合作用降低土壤溶液中的重金属浓度,另外植物体也会吸收部分重金属,因此尽管土壤中重金属的积累量随灌溉时间的增加而增加,但是要使土壤中重金属含量超过土壤环境质量标准还与灌溉水中重金属浓度的有关。灌溉水中重金属浓度限值即污水灌溉标准,用低于国家水质标准的水灌溉,土壤中重金属的累积量不会超过土壤环境质量标准。郭凤台等[12]分别用井水、中水、生活污水、生活工业混合污水和工业污水灌溉10年以上,灌溉水中铅含量分别为0.049,0.068,0.051,0.06,0.14mg/L,土壤铅的起始含量小于35mg/kg进行小麦、玉米生产试验得出污灌区土壤中重金属的积累都有明显增加,但没有超过国家土壤环境质量标准。MunirJ.MohammadRusan等[13]通过实验,分别对经过2年、5年和10年用污水(该污水是经过污水处理的,重金属含量符合国家污水灌溉标准)灌溉的试验点进行土壤测定,发现不同灌溉时间对Cu积累无明显差异;Zn、Fe、Mn积累量不稳定,但在表土中的积累量稳定。不同灌溉时间和土层深度土壤中的Pb和Cd积累量均无显著差异。O.Al-Lahhama等[14]通过在污水(处理水)灌溉的大田试验研究了重金属在马铃薯中的迁移问题,结果显示土壤中重金属铜、锰、铁积累随灌溉水中重金属浓度的增加呈上升趋势,但是不会超过约旦国家标准限值。杨庆娥等[15]研究发现用铅含量在0.052~0.14mg/L的污水灌溉下生长的白菜根和叶中铅含量均超出标准(1.0>0.2mg/kg,GB14935-94),土壤中铅累积量明显增加但是没有超过国家标准。杨朝晖[16]研究发现经过30年的污水灌溉已对土壤造成污染,土壤铅含量均为42~48mg/kg,略高于清灌区(高出0.6%~2.4%),超过土壤起始含量35mg/kg,小于350mg/kg,还没有超过国家土壤环境质量标准2级标准。重金属随着灌溉年限的增加积累量呈上升趋势,根据污染物质的输入输出总量及各种污染成分在土壤中的残留率,利用土壤中重金属的残留量的计算公式推测在未来50~100年中,灌溉水中重金属含量低于国家灌溉水质标准的情况下,灌溉区土壤中重金属的积累量不会超过国家标准。反之,灌溉水中重金属含量过高时,则会使土壤中重金属累积量超过土壤环境质量标准。段飞舟等[17]对鞍山宋三灌溉区稻田土壤重金属含量进行分析,结果表明,利用工业废水进行灌溉的稻田,土壤环境质量明显低于利用河水和城市生活废水进行灌溉的区域,也就是说明用重金属含量越高的水灌溉,土壤累积量越高。其中,工业废水中重金属Cd浓度为0.014mg/kg灌溉区土壤重金属累积量为0.54mg/kg,Hg浓度为0.00039mg/kg灌溉区土壤累积量为0.65mg/kg,超过国家标准。PeijunLia等[18]的研究发现长期工业废水灌溉造成镉浓度超过国家土壤环境质量标准3级标准,而锌和铅超过1级标准,Cu接近1级标准,Cd容易被植物体吸收累积,容易通过食物链富集,从而影响人类健康。其次,灌溉水中重金属浓度一定,土壤起始含量越高对作物的危害作用越强,土壤中重金属积累强度越大,因为土壤是一个生态系统对环境的容纳能力是有限的,重金属浓度越高,被污染程度越大,土壤的缓冲能力越弱,自身修复能力越差,这就可能导致更多的重金属被累积下来。也就是说土壤质量越差的土壤恶化速度越快。反之,土壤中重金属累积强度越小。近年来,随着污水灌溉对土壤、作物造成的危害越来越严重,在这方面的研究也逐渐引起人们的关注,但是大部分研究主要集中在污水灌溉对土壤和作物的影响方面。

第2种情况,土壤重金属含量较高而灌溉水中重金属的浓度较低。土壤起始含量较高时,用重金属含量较低的水灌溉,相当于稀释土壤溶液中重金属浓度,破坏了土壤重金属原有的平衡状态,促进难溶态向可溶态的转化,有利于重金属在土壤中的迁移。该过程一方面能够促进作物对重金属的吸收,另一方面有利于微生物对重金属的富集以及土壤的淋溶作用等。总之,土壤中重金属的累积量减少,有利于土壤的环境质量的提高。魏益华等[19]在再生水灌溉对菜地土壤次生盐渍化及盐分离子和重金属离子累积分布规律的影响做了研究,用全自来水和不同比例的再生水灌溉,结果显示重金属在各层土壤中的积累量并未随灌溉时间和灌溉量的增加而出现增加,灌溉55d土壤中重金属的含量明显低于32d时土壤中重金属含量。巫常林等[20]通过再生水短期灌溉对土壤-作物中重金属分布影响的实验研究中得出用清水和全再生水灌溉会使土壤中重金属含量降低,而且对2003-2004年冬小麦生长季节分析土壤-作物系统重金属的平衡状况,冬小麦收获时由地上部分带走的重金属含量均高于再生水灌溉的带入量。由此可以看出,重金属含量较低的灌溉水可以降低土壤重金属的累积量。但是由于大部分试验研究是在大田内完成,土壤重金属含量除受灌溉水的影响可能还与大气沉降、施肥等因素有关。在此方面可以通过室内盆栽试验做进一步的研究以确定灌溉水中重金属浓度对土壤重金属起始含量的影响。

第3种情况,土壤中重金属含量较低同时灌溉水中重金属浓度也较低时,由于作物吸收、淋滤、微生物富集等作用可能会使土壤得到缓慢的修复,而土壤起始含量较高时继续用污水灌溉可能会导致土壤恶化。在这方面的研究较少,还没有试验数据可以说明。

土壤重金属污染的来源范文篇2

关键词:危害重金属污染土壤修复

土壤是地球表面的疏松表层,它是人类赖以生存的重要自然资源,并且在生态环境中占有重要地位。而近年来,随着工业的快速发展和乡镇城市化,土壤重金属污染日益严重,由此会破坏人类生态环境,从而影响人们的健康,因此,土壤重金属污染的修复技术已成为一个研究热点。

一、土壤重金属污染的危害

随着工农业的快速发展,多种工业如采矿、冶炼、电镀、废电池处理、金属加工等的排放以及农业中各种农药,化肥的施用均是土壤重金属污染的来源。据报道,全世界平均每年排放Hg约1.5万吨,Cu340万吨,Mn1500万吨,Pb500万吨,Ni100万吨[1]。土壤重金属污染具有污染面积达、积累时间长、不易被微生物降解、有明显的生物富集作用等特点,被重金属污染的土壤会严重影响到农作物的生长和发育,从而导致农作物的减产并污染农作物。安志装等人[2]研究发现镉与巯基氨基酸和蛋白质的结合会引起氨基酸蛋白质的失活,甚至使植物死亡。另外,土壤中的重金属会被农作物吸收并在农作物体内富集,通过食物链进入人体,从而严重危害人体健康。

二、土壤重金污染修复技术

1.物理化学修复技术

1.1化学固化

化学固化法指的是通过在土壤中加入土壤固化剂来改变土壤的有机质含量、矿物组成、pH值和Eh值等理化性质,再经重金属的吸附或共沉淀作用来调节其在土壤中的移动性,从而降低其共生物有效性。固化剂将污染土壤中的重金属固定后,不仅可以减少重金属通过径流和淋洗作用对地表水和地下水的污染,而且被污染的土壤还有可能重建植被[3]。虽然化学固化法可以固化土壤中的重金属,但固化剂只是改变重金属在土壤中的存在形态,重金属仍留在土壤中,因而该方法还有待进一步的研究探讨。

1.2电动修复

电动修复是近年来快速发展的技术,其作用机理是将电极对插入被污染的土壤中,在通入微弱电流形成电场,使土壤中的重金属在电场形成的各种电动力学效应下定向移动,在电极区附近富集,从而将重金属处理或分离。

对于低渗透的粘土和淤泥土的修复,电动修复是常用的技术。郑喜坤等人[4]研究了电动修复技术对沙土中Pb2+、Cu3+等重金属离子的去除效果,结果表明,重金属离子的去除率达99%以上。电动修复技术是一种原位修复技术,它可以有效的去除土壤中的重金属离子,并且经济效益好,是一种可行的修复技术。

1.3土壤淋洗

土壤淋洗是一种适用于治理大面积重废污染土壤的方法。所谓淋洗,是指利用提取剂(包括有机或无机酸、碱、盐、表面活性剂和聚合剂等)将土壤中的固相重金属转化为液相,土壤在经水淋洗处理后可归回原位利用,而对于富含重金属的废水也可进行回收处理,从而达到修复土壤的目的[5]。吴华龙等人[6]研究了被铜污染土壤修复的有机调控机理,研究结果表明,外加EDTA对降低红壤对铜的吸收率与加入的EDTA量的对数量显著负相关。土壤淋洗法虽然处理量大,处理效率高,但会造成二次污染,因此,寻找一种既能提取各种形态重金属又不破坏土壤结构的提取剂将成为土壤淋洗法的研究热点。

2.植物修复

植物修复是指在被重金属污染的土壤中,种植某种特定的植物,利用该植物对重金属的耐性和超富集作用将重金属移出土壤,使土壤中的重金属降低到可接受的浓度,达到重金属污染修复的目的。

根据其修复过程和作用机理可将植物修复技术分为4种:①植物萃取技术,即利用超富集植物将重金属从土壤提取出来,并将其转移,贮存到地上部分,然后通过植物收割来对重金属进行集中处理的过程[7]。韦朝阳等人[8]研究发现了一种大叶井口草,它对As的富集有明显的效果,其地上部分最大含量可达694mg/Kg。②植物固化技术,即利用耐金属植物及其根系微生物的一些生物化学作用降低重金属的活性,使其固化,从而减少对土壤的危害。该方法主要适用于有机质含量的矿区污染土壤的修复。③根圈生物技术,即利用植物根际分泌物和根际脱落物刺激细菌和真菌的生长,通过细菌和真菌对重金属的吸附固定作用,是重金属矿化的过程。④植物挥发技术,即利用植物根系的吸收、积累和挥发作用减少土壤中一些挥发性污染物,及植物将污染物吸收到体内后将其转化为气态物质释放到大气中[9]。

3.工程措施

工程措施是比较经典和传统的修复土壤重金属污染的方法,主要包括客土、换土及深耕翻土等方法。通过客土、换土或者将深耕翻土与污土混合,使土壤中重金属的含量降低,减少重金属对土壤植物的毒害,从而使农产品达到食品卫生标准[10]。

客土法是将干净的土壤覆盖在已受污染的土壤上混匀,从而降低土壤中污染物的浓度;换土法是用干净的土壤代替受污染的的土壤,对于换出的土壤应进行处理,防止二次污染的发生;深耕翻土是将表层已受到污染的土壤翻至深层,从而使土壤中污染物的浓度降低。

三、结语

目前运用于修复土壤重金属污染的技术有很多,但每种修复技术对于土壤重金属污染修复均有一定的弊端,并且对于不同类型的土壤受重金属的污染的程度的不同,单一的使用某种技术并不能达到理想的效果,因此,在实际应用中,应综合多种修复技术的优点,互取优势,研究出新型的具有高效,低耗的修复技术。

参考文献

[1]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.

[2]安志装,王校常.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-296.

[3]VangronsveldJF.AsschcVandClijstersH.1995.Reclamationofabareindustrialareacontaminatedbynorrferrousmetals:Insitumetalimmobilizationandrevegetation.EnvironPoll,87:51-59.

[4]郑喜坤,鲁安怀,等.土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.

[5]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.

[6]吴龙华,骆永明,黄焕忠.铜污染土壤修复的有机调控研究I.可溶性有机物和EDTA对污染红壤的释放作用[J].土壤,2000,(2):62-66.

[7]丁华,吴景贵.土壤重金属污染及修复研究现状[J].安徽农业科学。2011.39(13):7665-7666,7756.

[8]韦朝阳,陈同斌,黄泽春,等.大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.

土壤重金属污染的来源范文篇3

摘要:随着我国工业现代化的发展,很多工厂在生产过程中会产生很多重金属,在排水污水、废物时没有达到环保标准,导致土壤重金属污染非常严重。为了解决这一问题,保护周围土壤,提高农产品质量,在处理中应用了化学固化方法,该方法价格成本低,处理方便,应用范围广。下面就对这些方面进行分析,希望给有关人士一些借鉴。

关键词:重金属污染;治理;化学固化

中图分类号:X53文献标识码:ADOI:10.11974/nyyjs.20170230222

1土壤重金属污染危害

1.1重金属污染导致的危害分析

重金属对土壤和水生态环境会造成严重的危害,在自然环境中,重金属是不能被降解的,植物在生长过程中,会吸收到植物内部,这样对植物的生长发育带来很大影响[1],不仅如此,人和自然是一个统一的整体,形成一个完整的食物链,如果人类误食了这些植物,就会对人体造成伤害,重金属危害性非常大,人体的微量元素含量都是有限的,如果超标,对人体是致命的伤害,人体中的蛋白质,核酸会和重金属发生作用,进而导致人体酶活性的下降,严重的情况还会消失,最终导致核酸结构发生很大变化,甚至会出现基因突变的问题[2]。

1.2分析当前土壤中的污染情况

通过调查研究得知,农业、工业、以及城市事故污染是重金属主要的污染来源。比如在农业生产过程中,如果使用含有重金属的水体进行农作物的灌溉,或者使用含有重金属的化肥农药,对周围的土壤都会造成严重的重金属污染。而在工业方面,比如选矿采矿,还有冶炼和锻造过程中,其操作的每一个过程都会产生重金属,在排放的废水废气以及废渣中,如果不能很好的过滤消毒处理,那么水体进入土壤中,也会有严重的重金属污染[3]。在这种重金属浓度严重超标的情况下,会对周围的空气,水体,以及土壤造成严重的危害。而在城市当中,污水处理厂是重金属污染的主要来源,有关部门监管不力,导致污水没有达到国家标准就进行了排放,大量的污水引入生活用水中造成污染。

2土壤重金属污染治理的化学固化分析

2.1分析重金属固化的原理

为了避免重金属对土壤、地下水造成持续的污染,在应用化学固化方法中,先要向被污染的土壤中添加固化剂,土壤中的活性就会被改变,这样重金属和土壤中的移釉素会相互结合,在外在形式下出现一定的固化现象,为了保证土壤有记性,迁移性等,必须进行化学处理,恢复土壤的活性。化学固化作用后,土壤中的元素都有很大的改变,最终做到对污染土壤的修复。

2.2沉淀在化学固化中的作用分析

在土壤中放入固化原料后,在不断溶解中产生一定的阴离子,这些阴离子和重金属相互结合,之后就开始出现重金属沉淀,生物有效性等都开始降低。最为常用的固化剂有石灰石,作用机理是将土壤中的pH提高,这样在其中重金属元素发生沉淀,重金属在土壤中其毒性会随时浸出,石灰石可以减少浸出量,这样重金属就会被固定,不会将污染范围继续扩大,控制污染的进一步恶化。

2.3吸附在化学固化中的作用分析

通过应用化学固化方式,使用的化学元素作用在土壤层中后,这些固化材料对重金属有一定的吸附作用,原理是吸附剂对吸附质的质点有很强的吸引作用,但是处理中分为化学吸附和物理吸附,其中的沸石是主要的添加剂,经过科学人员的研究,沸石具有特殊的Si-O四面体结构,该结构吸附性非常好,在物理吸附作用下可以将Pb、Cd等重金属吸附到表面上,这样重金属就被固定减少土壤中的重金属污染。

2.4分析配位在其中的作用

在固化过程中,会出现配位问题,不同配位表现的情况也不同,黏土矿物中层和层利用分子之间的作用相结合,这样在实际应用中,被重金属污染的土壤中,其金属离子可以进入到这些化学元素的内部,和层间元素结合,之后会和SiO元素发生晶间的配合,黏土矿物添加到污染土壤中后,就可以有效降低重金属生物性和迁移性,这样就对这些污染土壤进行了一定程度的化学修复。除此之外,这些改良剂还能和重金属离子发生很好的配位作用,将Pb,Cd等重金属吸收,控制其对土壤的污染。

3总结

通过以上对土壤重金属污染治理的化学固化研究,发现化学固化的作用非常大,其对重金属污染的处理非常强,效果非常好,在以后的发展中,要深入研究这一技术,进一步完善和提高,推动我国对处理重金属污染的技术和水平,为以后的发展奠定基础。

参考文献

[1]孙朋成,黄占斌,唐可,等.土壤重金属污染治理的化学固化研究进展[J].环境工程,2014(1):158-161.

[2]刘云国,夏文斌,黄宝荣,等.重金属污染土壤化学固化技术与萃取修复技术的应用及修复效果(英文)[J].中南林业科技大学学报,2012(4):129-135.

[3]景生鹏,黄占斌,景伟东.化学改良剂对矿区重金属Pb、Cd污染土壤治理的作用[J].资源开发与市场,2016(1):72-76.

土壤重金属污染的来源范文篇4

关键词:土壤质量;对策;锦州

中图分类号:

文献标识码:A文章编号:1674-9944(2017)6-0073-02

1锦州市自然概况

锦州位于辽宁省西南部,“辽西走廊”东端,是连接中国华北和东北两大区域的交通枢纽,总面积1.03万km2,海岸线124km,地形概貌大体是“三山一水三分田,二分道路一庄园”,呈东南低、西北高地势。

2锦州市土壤质量现状

“十二五”期间,锦州市共监测12个区域,66个点位。用单项污染指数评价66个点位的超标情况,超标项目有镉、汞、镍、六六六和苯并芘。通过“十二五”期间土壤的例行监测锦州市土壤主要污染为镉和汞,镉污染最重。处于中度污染和重度污染的点位均分布在禽畜养殖场周边,土壤中的镉在部分程度上取决于区域地理状况,锦州市不同区域均有不同程度的镉污染。11月30日,锦州市政府正式印发《锦州市土壤污染防治工作方案》。

3土壤污染现状分析

3.1土壤农药污染

根据全国土壤污染状况调查初步统计分析结果,我国人均耕地面积只有世界人均30%左右,化肥使用量占全球使用量的40%。在人均耕地有限的情况下,为了提高产量,增加收入,农户大量使用化肥和农药。不合理使用农药化肥最终导致了农副产品危机。农业是可持续发展的重要基础,农业一旦出现问题,将动摇社会的根本。过量施用化肥会造成土壤污染,减少土壤中的害虫天敌及微生物,使土壤酸化、盐类聚集。农产品的农药残留会污染水源,使地表水富营养化等。

3.2土壤重金属污染

造成污染的几大污染源:农药、化肥、重金属。在这三类污染源中,农药和化肥是农业生产中使用的,存在着使用不当的问题,然而重金属带来的危害也远远超过农药和化肥所带来的危害[1]。重金属污染问题近年来愈演愈烈。随着规模化养殖的发展,添加了重金属元素的饲料添加剂被广泛使用,同时很多锌、铬等重金属在动物体内代谢不充分,导致动物粪便中重金属超标,农家肥的广泛施用导致农田中重金属的超标。

4土壤污染防治对策建议

4.1完善防治的法律法规

土壤污染,虽是一种“看不见的污染”,但与每个人的健康紧密相连。要实现土壤污染的彻底根治,必须坚持法治。我国土壤污染防治尚处于起步阶段,从而导致在立法层面和实践环节存在许多缺陷。鉴于此,当前最为需要的就是让土壤污染防治工作实现有法可依,不要让法律在此出现缺位现象。因此,就要在完善法律体系的过程中,细化土壤保护范围,形成有效的预防和治理机制,探索建立一整套的行政管理机制,并严厉追究相关责任人的法律责任。

4.2加强环保部门的工作效能和公信力

土壤污染问题与每一位公民的健康息息相关,它会对人体造成直接或间接危害。政府部门应该更加重视土壤污染信息的公开。同时土壤监测技术有待提高,应提高技术,更新设备,建立完善的土壤环境质量监测体系。

4.3发展生态农业实行风险管控

农户大量使用化肥和农药[2],使土壤遭到严重破坏,针对中国农村耕地土壤污染特别严重,农产品不能出口、不能吃的状况,应重点了解地方落实环境保护,党政同责和一岗双责,严格责任追究等情况,应摒弃现行的高农药、高化肥、高残留、高污染的农业生产,大力发展推广保护环境和实现资源持续利用的生态农业[3]。一方面提高农民收入,另一方面改善土壤质量。土壤治理和大气、水的治理不同。土壤污染往往具有累积性、难可逆性。精耕细作的模式过度透支农地肥力,导致土地有机质下降、耕地碱化趋势明显。对此,政府应当在户籍、新增就业岗位等方面为农业劳动力向城市非农劳动力转移创造便利条件,进一步推进城市化水平,吸纳农村富余的劳动力。农业劳动力进一步减少,人均耕作的耕地数量提高,鼓励土地使用权流转,通过集约化经营,加强管理、合理施肥与轮作,提高生产效率,顺势提高粮食生产质量标准。针对土壤污染的特殊性,不对所有的被污染土壤进行治理。而是进行风险管控,按照风险高低排序,择重优先处理[4]。

4.5全民参与防治土壤污染

完善公众参与制度,赋予社会公民监督权和知情权,调动民众环境治理的热情动力,发挥民众对环境治理的舆论O督作用,从而督促土壤污染防治工作的有序、规范开展。不做旁观者,要做参与者,使防治土壤污染成为全民的自觉行为。

参考文献:

[1]邓小云.农业面源污染防治法律制度研究[D].青岛:中国海洋大学,2002.

[2]刘云喜.中国农村经济转型条件下的农民就地城市化问题研究[D].北京:中央民族大学,2012.

土壤重金属污染的来源范文篇5

关键词:重金属;污染;土壤;修复技术

近几年,土壤污染问题得到社会的关注,社会提高了对重金属污染土壤的重视度,全面调金属在土壤中的污染问题,以免影响人类的健康。重金属对土壤的污染,采取修复技术进行处理,控制重金属对土壤的污染,保障土壤的清洁性。土壤重金属污染中,落实监测修复技术,全方位优化土壤环境。

一、重金属污染土壤的修复技术

重金属土壤污染中,修复技术主要分为3类,分别是化学修复、物理修复和生物修复,对其做如下分析。

1、化学修复

化学淋洗,通过清水、化学试剂的方法,将重金属污染物在土壤中淋洗出来,或者采用气体淋洗。化学淋洗方法中,利用沉淀、吸附的方法,把土壤中的重金属,转换成液相状态,进一步处理重金属,淋洗液是可以重复使用的,所以重点向土壤重金属污染的区域注入化学剂,提高重金属在土壤中的溶解度[1]。化学淋洗方法中,常用的淋洗剂有表面活性剂、螯合剂以及无机淋洗剂,无机酸类型的物质,对土壤中的重金属污染有很明显的作用,例如:土壤中的重金属污染砒,其可采用磷酸清洗,大约清洗6个小时,就可以达到99.9%的去除率。

化学固定,在重金属土壤污染中,加入化学试剂、化学材料,促使重金属之间对土壤的有效性降低,避免重金属迁移到土壤介质内,修复被污染的土壤。化学固定的核心是固定重金属在土壤中的状态,改良土壤状态,研究化学固定在土壤重金属污染中的作用,逐步修复土壤,采取研究试验的方法,在土壤修复中落实化学固定方法。化学固定方法常用在低重金属污染的土壤修复中,重金属很容易根据外界的环境变化而发生变动,所以要灵活的选择修复剂,在改变土壤结构的同时,修复土壤中的重金属污染。

电动修复,此类化学修复方法,是一类新型的手段,其在重金属污染土壤的两侧,增加电压,形成具有电场梯度的电场,重金属污染物会在电迁移、电渗流的作用下,分散到两极处理室内,进而修复土壤结构。电动修复常用于低渗透的土壤内,成本相对比较低,不会对土壤造成任何破坏,体现了电动修复在土壤中的作用[2]。电动修复技术在重金属土壤污染中,最大程度的保护土壤环境,在处理效率方面稍微偏低。

玻璃化技术,利用1400~2000℃的高温环境,熔化土壤中的重金属污染元素,熔化的过程中,重金属有机物会逐渐分解,经热解后,尾气处理系统会收集热解的产物。玻璃熔化物在冷却的过程中,能够包裹重金属污染物,限制重金属迁移,玻璃体的强度比混凝土高10倍,异位玻璃化处理时,配置多种热能,选择直接加热、燃料燃烧的方法,同时配合电浆、电弧的方式,完成导热的过程,原位处理后,将电击棒插入到重金属污染区域,解决重金属污染的问题。玻璃化技术在处理土壤重金属方面的效果非常快,需要大量的能量,增加了重金属污染处理的成本。

2、物理修复

换土法,是物理修复的典型代表,利用清洁土壤,替换有重金属污染的土壤,以便稀释重金属污染的浓度,适当的增加土壤的环境容量,进而达到土壤修复的标准[3]。换土法又可以划分为:换土、客土、翻土等,分析如:(1)换土需要更换有重金属污染的土壤,置换成新土,此类方法可以置换小面积的土壤污染,保护好被替换的土壤,避免出现二次污染;(2)客土,此类方法需要向重金属污染土壤中增加清洁的土壤,覆盖或者混入到污染土壤内,提高土壤自我修复的能力。(3)翻土是针对深层次的土壤进行替换,促使重金属污染物可以分散到深层次,稀释重金属在土壤中的浓度,体现出自然修复的作用。换土法需要将有重金属污染的土壤,与生态系统隔离,避免造成更大的土壤污染。

热脱附法,利用了重金属的物理挥发特性,通过微波、红外线辐射、蒸汽的介质,加热重金属的污染土壤,促使土壤的污染物能够挥发,配置真空负压的方式,收集土壤中挥发出的重金属物质,完成土壤修复。土壤热脱附的过程中,运用不同的温度,如:90~320℃、320~560℃,落实热处理技术,采取预处理、旋转炉热处理、出口气体的三个阶段,实现土壤的修复。

3、生物修复

植物修复,借助植物的吸收、固定、清除等功能,修复土壤,去除土壤中的重金属污染。植物能够降低土壤中重金属的含量,降低重金属在土壤中的毒性。植物修复方面,分为植物稳定、植物提取、植物挥发的方式。例如:植物稳定修复,植物的根部可以吸收、还原土壤中的重金属污染物,植物根部能够减缓重金属的移动能力,提高植物根部的利用效率,避免重金属参与到生态食物链内。植物修复不仅能处理土壤中的重金属,还能保障土壤的稳定与稳固。

微生物修复,其在重金属土壤污染中,虽然不会降解、破坏重金属元素,但是可以改变重金属的性质,避免其在土壤中发生转化、迁移。微生物修复的核心是,利用微生物沉淀、氧化等反应,清除土壤内的重金属污染物。例如:微生物菌根,连接着土壤和重金属,其可改变植物对重金属的吸收,促使植物可以快速将土壤中的重金属转移。

动物修复,土壤中的一些动物,如:蚯蚓,可以吸收重金属污染物。重金属土壤污染区域,可以采取人工干预的方式,向污染区域中投放高富集的动物,促进重金属的吸收,降低重金属在土壤中的毒性[4]。动物修复的研究历史很长,为重金属污染提供了较好的处理条件,根据重金属在土壤中的污染浓度,规划动物修复。动物修复已经可以应用到工业污染土壤处理上,专门处理工业造成的重金属土壤污染,提高土壤的质量水平。

二、重金属污染土壤修复技术建议

针对重金属污染土壤修复技术的应用,提出几点建议,用于提高土壤的修复能力。首先重金属污染土壤修复方面,根据污染的状态,筛选并培育出油量的植物,如:超富集植物,促使植物能够满足重金属污染土壤修复的需求,在重金属污染土壤修复方面,研究超富集植物,要更为高效的采取筛选并培育修复生物,提高土壤修复的经济效益;然后是微生物对土壤修复的建议,菌类对重金属处理的能力很强,培育出富集重金属能力强的菌株,处理好土壤中的重金属元素;第三是研究重金属土壤污染的技术性修复方法,如纳米材料中的纳米磷石灰、零价铁,以此来提高土壤的pH值,改变土壤内重金属的价态表现,逐步降低重金属在土壤中的活性,抑制土壤修复重金属,最大程度的保护土壤环境。土壤重金属污染方面,还要注重修复技术的研究,优化土壤的环境。

结束语:

重金属在土壤环境中,属于比较明显的一类污染源,根据重金属污染土壤的状态,落实土壤修复技术,保护好土壤环境,消除土壤中的重金属污染源。土壤环境中,要按照重金属污染的分析,采用修复技术,不能破坏土壤的结构,还要发挥修复技术的作用,恢复土壤的能力。

参考文献:

[1]罗战祥,揭春生,毛旭东.重金属污染土壤修复技术应用[J].江西化工,2010,02:100-103.

[2]秦樊鑫,魏朝富,李红梅.重金属污染土壤修复技术综述与展望[J].环境科学与技术,2015,S2:199-208.

土壤重金属污染的来源范文篇6

关键词污灌区;重金属污染;潜在生态风险;评价;甘肃白银;东大沟

中图分类号X53文献标识码A文章编号1007-5739(2015)15-0215-03

污水灌溉曾被认为是缓解农业水资源紧张状况的重要途径,但长期使用未经处理的污水进行灌溉,可能会导致污水中的重金属等污染物在土壤中累积,并经过作物吸收进入食物链,或通过某些迁移进入地下水和大气,最终威胁其他动物甚至人类的健康[1]。由于长期污灌已经引起了一系列的环境问题,如小麦拔节后抽穗少、蔬菜易腐烂不耐贮藏等[2]。因此,污染土壤修复技术已成为全球的热点研究领域之一,通过土壤淋洗、加入土壤改良剂使重金属固化或改变重金属形态、微生物与植物的生物修复等措施,可以减轻或清除土壤的重金属污染[3]。但无论采取何种污染修复技术,都必须先了解土壤污染状况、污染类型和污染程度等,才能采取相应的措施。

白银市位于甘肃省中部,黄河上游,地下水资源丰富,黄河流经市辖区,水能资源充足。面积2.12万km2,人口180万人。白银地区矿产丰富,开采历史悠久,矿产资源有铜、铅、锌、金、银等金属矿产及硫磺、煤炭、石膏、石灰石、芒硝、氟石等非金属矿产。白银市几十年来粗放的有色金属采选和冶炼加工,致使境内东大沟流域农田及周围生态环境的重金属污染问题严重,直接影响黄河流域生态安全。东大沟是白银市东市区工业区的一条排污沟,起源于白银公司露天矿,由北向南穿过白银市东市区,流经38km于四龙口汇入黄河。沿途主要接纳了白银公司、银光公司等工业企业排放的工业废水和东市区居民生活污水。作为农业灌溉用水的有效方式,东大沟沿线耕地用污水灌溉有很长的历史。因此,研究污灌区土壤重金属污染特征,对土壤环境质量进行评价,可为污灌区土壤重金属污染修复提供科学依据。

1研究方法

1.1样品采集

1.1.1采样区域与采样点分布。本次研究基于2007年全国第二次土壤普查工作中在东大沟污灌6个不同区域(分别标记为A、B、C、D、E、F)采集的表层土壤,采样深度为0~20cm,共计50个,其中区域A有4个,区域B有10个,区域C有23个,区域D有3个,区域E有6个,区域F有4个,代表白银市东大沟污灌区域土壤环境质量,采样定位见图1。

1.1.2土样采集与处理方法。测量重金属的样品用竹片或竹刀去除与金属采样器接触的部分土壤,再用其取样。等重量混匀后用四分法弃取,保留相当于风干土3kg的土样记录装袋。采样结束后,采样小组填好样品流转单,同样品一起交样品管理员。采集的土壤样品放置于风干室的风干盘中,除去土壤中混杂的砖瓦石块、石灰结核、根茎动植物残体等,摊成2~3cm的薄层,经常翻动。半干状态时,用木棍压碎或用2个木铲搓碎土样,置阴凉处自然风干。风干后的样品倒在有机玻璃板上,用木锤敲打,用木棒再次压碎,细小已断的植物须根,采用静电吸附的方法清除。混匀土样,过孔径2mm的尼龙筛,去除2mm以上的砂粒,大于2mm的土团继续研磨、过筛。过筛后的样品全部置于无色聚乙烯薄膜上,充分搅拌、混合直至均匀,用四分法弃取、称重,保留2份样品,一份装瓶备分析用,另一份继续进行细磨,过孔径0.15mm的尼龙筛用于分析。

1.2样品分析

采用盐酸-硝酸-氢氟酸-高氯酸全消解的方法,彻底破坏土壤中的矿物晶格,使试样中的待测元素全部进入试液,使用Zeenit-700原子吸收分光光度计测定Cu、Pb、Zn、Cd,使用AFS-930原子荧光光度计测定As、Hg。所有测定均有空白样和质控样进行质量控制。

1.3评价方法

污染评价的方法很多,目前使用较多的是指数法,不同的评价方法侧重点不同。本次研究采用污染综合指数法、污染分担率对污灌区土壤重金属污染特征进行评价,采用Hakanson潜在生态危害指数法对污灌区土壤生态风险进行评价。

1.3.1土壤重金属污染质量评价。土壤按照应用功能、保护目标和土壤主要性质划分为3类,Ⅱ类主要适用于一般农田、蔬菜地、茶园、果园、牧场等土壤。土壤质量基本对植物和环境不造成危害和污染。本次评价区域执行《土壤环境质量标准》(GB15618―1995)Ⅱ类土壤标准[4],采用单项污染指数和综合污染指数,对污灌区土壤重金属污染进行评估。具体的数学模型如下。

单项污染指数:Pi=Ci/Si

污染分担率:Ki(%)=(Pi/P)×100

式中,Pi为第i种污染物单项污染指数,Ci为第i种污染物的实测值,Si为第i种污染物的评价标准,P为污染综合指数,Ki为第i项污染物所占的分担率(%)。

土壤质量分级标准见表1。综合污染指数全面反映了各污染物对土壤污染的不同程度,同时充分考虑了高浓度物质对土壤环境质量的影响。

根据国家土壤环境质量标准的定义,本文将土壤环境质量分为5个级别,具体分级见表2。

1.3.2潜在生态风险评价。瑞典著名地球化学家Hakanson在1980年提出的潜在生态指数法(ThePotentialEcologicalRiskIndex)(RI)是一套应用沉积学原理评价重金属污染和生态危害的方法。该方法作为国际上土壤(沉积物)中重金属研究的先进方法之一,不仅反映了某一特定环境中不同污染物的影响,同时也反映了多种污染物的综合影响,并定量划分出潜在危害程度,是目前应用很广的一种方法。我国著名学者陈静生曾于1989年根据Hakanson的关于潜在生态危害指数评价方法介绍了6个重金属元素的毒性系数的计算方法,并给出了毒性系数。随后,我国众多学者在研究土壤(沉积物)重金属污染评价中也大量使用了潜在生态危害指数法。

单个元素污染系数:Cir=Ci实测/Cin

式中,Cir为某一种金属的污染系数,Ci实测为土壤(沉积物)重金属元素的实测含量,Cin为该元素的评价标准,某一重金属的潜在生态危害系数Eir=Tir×Cir

某一点土壤(沉积物)多种重金属综合潜在生态危害指数:

Hakanson提出的重金属毒性水平顺序:Hg(40)>Cd(30)>As(10)>Pb(5)=Cu(5)>Zn(1),潜在生态风险指数可以定量评价单一元素的风险等级,也可以评价多个元素的总体风险等级。重金属的潜在生态风险指标与分级关系见表3。

2结果与分析

2.1东大沟污灌区土壤重金属污染特征

对白银市东大沟污灌区50个点位表层采集的土壤样品,使用原子吸收光度法和原子荧光光度法完成了6种元素(Cu、Pb、Zn、Cd、As、Hg)的测试。同时,选取全国第二次土壤普查中本地区环境土壤背景点的土壤样品,并将此作为本地的背景值。监测分析结果可知,东大沟污灌区不同区域表层土壤中重金属含量分布差别较大(表4)。由表4可知,6种重金属含量均值大小在区域A、E、F中依次为Zn>Pb>Cu>As>Cd>Hg,区域B依次为Cu>Zn>Pb>As>Cd>Hg,区域C、D则为Zn>Cu>Pb>As>Cd>Hg。重金属污染程度沿程分布呈现逐渐降低的趋势。

以相关元素背景值为评价标准是土壤环境质量评价的最基本的依据之一,也是判别土壤污染程度与否的重要标准之一[5]。通过与白银市土壤背景值比较,污灌区表层土壤中6种重金属平均含量均显著高于土壤背景值。其中,Cu的最高平均值达到土壤背景值的39倍(区域B),Pb为24倍(区域A),Zn为23倍(区域A),Cd为475倍(区域A),As为15倍(区域F),Hg为48倍(区域F)。除As和Hg外,其他重金属元素的超标率为100%。因此,由于历史原因和现实条件限值,常年使用处理未达标的污水灌溉,白银市东大沟污灌区表层土壤已经出现了严重的重金属累积现象,应引起农业环境部门的重视。

2.2东大沟污灌区土壤重金属污染质量评价

由于该地区的土壤pH均值为7.58,属微碱性环境,故选择国家土壤环境质量标准pH>7.5的二级限量值作为污染评价值,计算污灌区土壤中6种重金属的单项污染指数值和综合污染指数值,分析结果见表5。

从表5可以看出,根据单项污染指数法和综合污染指数法的评价结果,污灌区表层土壤已经受到重金属污染。在研究区中的重金属,Cu、Pb、Zn、Cd、As、Hg的单项污染指数的变化范围分别为1.06~7.57、0.50~1.99、0.73~4.46、10.7~62.0、1.68~6.92、0.14~1.89;单项污染指数均值分别为3.91、1.34、2.50、35.2、3.32、1.06,均大于1。在研究的污灌区中,Cd的污染指数最高,对环境的污染也最大。表层土壤重金属的平均单项污染指数从大到小依次为Cd>Cu>As>Zn>Pb>Hg。

污灌区的综合污染指数范围为2.5~13.2,均值为7.9,污灌区土壤受到重污染,作物受到的污染已相当严重。由综合污染指数看以看出,各个污灌区表层土壤重金属污染程度为区域C>区域A>区域B>区域D>区域F>区域E。从分布的区域来看,重金属污染程度呈现污灌土地沿流域自上而下,由近岸到远离逐渐降低的趋势。

污染物分担率反映了各污染物在污染过程中所占的比率。从表6看以看出,污灌区表层土壤中6项污染物平均分担率的顺序为Cd>As>Cu>Zn>Pb>Hg,但不同区域中污染物分担率有差别。在污灌区表层土壤中,Cd污染物分担率明显高于其他污染物,平均值达到了72.51%,因此东大沟污灌区表层土壤重金属的污染程度主要由该地区Cd的污染程度来判定。从污染因子结构来看,与东大沟纳入废水企业明显相关。

2.3东大沟污灌区表层土壤潜在生态风险评价

根据东大沟流域特点,综合本地区背景土壤不会对东大沟污灌区土壤中重金属含量造成影响情况,本次研究确定以《土壤环境质量标准》(GB15618―1995)Ⅱ类标准进行生态风险评价。

表7列出了白银市东大沟污灌区表层土壤单个重金属潜在生态风险系数和综合生态风险指数。通过计算结果可以看出,污灌区表层土壤重金属综合潜在生态危害指数为352~2009,平均达1159,生态风险达到很强生态风险,只在区域E(RI=352)为较强生态风险,表明白银市东大沟污灌区表层土壤受到严重污染,应引起充分的关注。污灌区表层土壤6种重金属的潜在生态风险系数Eir范围:Cu为5~38,Pb为3~10,Zn为1~4,Cd为321~1860,As为17~69,Hg为6~76。从6种重金属的潜在生态风险系数的均值来看,其潜在生态风险程度为Eir(Cd)>Eir(Hg)>Eir(As)>Eir(Cu)>Eir(Pb)>Eir(Zn)。在整个污灌区表层土壤中,Cu、Pb、Zn处于轻度的潜在生态风险,而Cd则处于极强的潜在生态风险。As在区域F中处于中等的潜在生态风险,在其他区域则处于轻度的潜在生态风险。Hg在区域B、C、F中处于中等的潜在生态风险,而在其他区域处于轻度的潜在生态风险。由此可见重金属Cd为东大沟污灌区表层土壤重金属污染首要污染物。表7分析结果表明,污灌区表层土壤中处于很强的潜在生态风险水平,则主要是由Cd所引起的。Cd的潜在生态风险系数均值为1055,远高于极强生态风险值,在6个区域50个点位中,仅有1个点位为中等生态风险水平,占所监测点位的2%;3个点位处于较强生态风险水平,占所监测点位的6%;7个点位为很强生态风险水平,占所监测点位的14%;其余的39个点位达到极强生态风险水平,占所监测点位的78%[6]。

土壤重金属污染的来源范文1篇7

工业污染以及农药、化肥的不当使用,我国农地土壤中的重金属含量迅速增加,使得土壤生产力下降、农产品遭受污染,这已经成为了阻碍农业绿色、高效、可持续发展的重要因素之一[1-2]。重金属在土壤中能够被粮食作物富集[3],进而通过食物链威胁人类的健康[4-5]。例如,Pb、Hg可以对神经系统造成毒害,引起神经系统退行性病变[6];As能够使细胞代谢失常,导致神经麻痹、血溶性贫血及血管坏死[7]。土壤的重金属污染对人类健康的威胁程度正在逐年上升。因此,为了确保粮食的安全供应,从根本上阻断重金属的摄入来源,就必须进行农用地健康评价,以掌控农田土壤及作物的污染情况。重金属对于农地土壤乃至粮食作物质量的危害是多方面的,不仅降低了土壤微生物的种类和数量[8],还会明显降低土壤酶活性,从而降低土壤对残留有机质的分解能力[9]。许多学者结合内梅罗(Nemerow)综合污染指数法对土壤的重金属污染情况进行分级评价,较好的反映了土壤的污染状况[10-12]。土壤-作物系统是重金属威胁人类健康的重要途径,通过研究重金属从土壤转移至作物的累积情况来评价粮食生产安全具有重要的理论价值和现实意义[13-15]。张家港市城市化发展迅速,城镇建设用地快速扩张[16],对农业用地的压力也逐年上升。目前针对该市土壤污染的相关研究较少,对该市土壤环境质量的了解并不全面[17],基于土壤-作物系统的重金属污染研究仍有待开展。因此,本研究选取重金属作为评价农地土壤环境质量的指标,结合内梅罗综合污染指数法对农地土壤中的重金属分布状况进行评价分析,并通过对水稻残根中的重金属残留量的跟踪分析,以期掌握张家港市农地土壤重金属的污染状况及其对粮食质量的动态影响。1材料与方法1.1研究区概况张家港市地处北纬31°43'~32°02',东经120°21'~120°52',位于长江下游南岸,江苏省东南部,现辖8个镇和常阴沙管理区,全市总面积998.48km2。该市属亚热带海洋性季风气候,年平均气温15.2℃,年平均降水量为1042.9mm,年平均日照时长为2047.5h,主导风向为东南风。土壤类型主要为潮土和水稻土,亦有少量黄棕壤零星分布。水稻、小麦、油菜是该市的主要种植作物。1.2样品采集与分析采样时间为2010年12月,在张家港市范围内均匀选取样点20个,每个样点选择5处混合样方,每个样方取0至20cm表层土壤及附近的水稻残留根。即先选定中心样方,并向四周辐射约50m分别再取4处样方,将这5个点取得的土样制成1kg左右土壤样品作为该样点的土样,置于通风处风干,风干过程中拣出石子、植物残骸等杂物,过100目尼龙网筛后,称取约200g土样封存于密封袋中,并对应取样地点进行编号;将在同一采样点收集的水稻残留根混合作为该样点的水稻残根样品。样品送南京大学现代分析中心进行进一步的预处理并利用等离子体原子发射光谱仪等仪器分别测定土壤及残留根中的Hg、As、Se、Pb、Cu的含量。1.3统计方法分别计算土壤中Hg、As、Pb、Cu4种重金属元素的单因子指数和综合污染指数,并统计分析重金属的平均值、标准差、变异系数等。在SPSS17.0环境下对农地土壤及农田水稻残根Hg、As、Se、Pb和Cu进行Pearson相关分析。1.3.1单因子指数评价法单因子指数评价法常用于评价污染物在环境介质中的污染程度。其计算公式为:Pi=Ci/Si,式中:Pi为i污染物的污染指数;Ci为污染物实际测量值,Si为评价标准值[以土壤质量对植物和环境不造成危害和污染的《土壤环境质量标准》(GB15618—1995)二级标准作为评价标准]。Pi值越大,则污染越严重。1.3.2综合污染指数评价法综合污染指数评价法突出了污染较重的污染物的作用,可以用来综合掌握土壤重金属的污染情况,其计算公式为:PN=[(P2avg+P2max)/2]1/2,式中:PN为综合污染指数;Pavg为各单项污染指数平均值;Pmax为各单项污染指数最大值。2结果2.1土壤重金属含量综合表1、表2,土壤Hg含量为0.0049~0.4300mg/kg,单因子指数的平均值为0.141,标准差为0.193,变异系数为1.373;As的含量为2.76~5.24mg/kg,单因子指数的平均值为0.162,标准差为0.024,变异系数为0.150;Se的含量为0.041~0.066mg/kg;Pb的含量为11.8~17.8mg/kg,单因子指数的平均值为0.050,标准差为0.005,变异系数为0.105;Cu的含量为12.5~22.9mg/kg,单因子指数平均值为0.172,标准差为0.030,变异系数为0.174;各采样点综合污染指数为0.103~0.645,平均值为0.153,变异系数为0.752。对照国家土壤环境质量标准,研究区Hg、As、Pb、Cu的含量均低于国家二级标准值,单因子指数和综合污染指数总体偏低,说明张家港市农地土壤清洁,基本未受人为活动造成的污染。在常东社区和常北社区的Hg的单因子指数及综合污染指数均略高于其他采样点,出现这种现象的原因可能是这一地区有较多污染工业企业聚集,如玻璃制造、钢制品、机械设备制造、染料助剂等工厂;As、Pb和Cu的变异系数都很低,这几种元素在全市范围内的分布差异不大,相对而言,Pb、Cu在张家港南部高庄村地区的含量更低一些,可能是因为该地区离张家港城区及工业密集区较远,尚未受到城市化及工业扩张的波及。从全市范围来看,各种重金属的分布并未表现出聚集效应,比较零散,没有扩散的趋势,说明目前工业的发展尚未对农地质量构成较大威胁。2.2水稻残留根重金属含量由表1可知,除常北社区2个样点分别检测到Hg0.0040mg/kg和0.0044mg/kg,其余采样点并未检测到Hg的残留,这与土壤中的Hg含量分布情况基本一致,值得指出的是,造成这一现象的原因除了周围工业的影响外,也不排除有农户使用了含Hg的农药或除草剂的可能;As的含量为0.83~2.66mg/kg,平均值为1.32mg/kg;Se的含量为0.009~0.030mg/kg,平均值为0.016mg/kg;Pb的含量为2.68~7.46mg/kg,平均值为4.12mg/kg;Cu的含量为9.5~44.2mg/kg,平均值为24.0mg/kg。As、Se、Pb在水稻残留根中的残留量与表层土壤平均含量之比分别为32.65%、29.79%、27.76%,进一步说明这几种重金属基本未对水稻造成危害;Cu在水稻残留根中的平均残留量达到了土壤环境的1.4倍,其中含量较高的点集中于东北部地区,而最南部的采样点含量最低,这与张家港市农田附近工业的分布格局现状相符。#p#分页标题#e#2.3残留根重金属含量与土壤重金属含量相关性分析对残留根Hg、As、Se、Pb、Cu与表层土壤Hg、As、Se、Pb、Cu5种重金属的含量逐一进行了Pearson相关性分析,结果表明,残留根中As与土壤中As的Pearson相关系数为0.230(P>0.05),残留根中Cu与土壤中Cu的Pearson相关系数为-0.113(P>0.05),残留根中Se与土壤中Se的Pearson相关系数为0.441(P>0.05),残留根中Pb与土壤中Pb的Pearson相关系数为0.428(P>0.05),残留根中Hg与土壤中Hg的Pearson相关系数为0.574(P<0.05),表明除Hg外水稻残根中重金属含量与土壤中重金属含量无相关性,这种现象一方面是因为土壤中的重金属并不全是能被作物直接吸收的有效态[18],另一方面也说明水稻残根中的重金属可能已经有了一定程度的流失。重金属之间土壤中As与Se、Se与Pb、Se与Cu都达到了极显著相关水平,As与Pb达到显著相关水平(表3);残留根中As与Se、As与Pb、As与Cu、Se与Pb均达到了极显著相关水平(表4)。说明这些元素之间可能存在着一定的伴生关系[19]。3讨论研究区农地表层土壤中的Hg、As、Pb和Cu的重金属含量均低于《土壤环境质量标准》二级标准的限制值,对重金属的综合污染指数的分析结果表明研究区土壤均未受到重金属污染,土壤综合质量良好,只有常北社区2号采样点的综合污染指数达到0.645,这主要是因为该处Hg的含量明显高于其他样点,故应重视该区域Hg的污染。各采样点水稻残留根中As为1.32mg/kg,Se为0.016mg/kg,Pb为4.12mg/kg,Cu为24.0mg/kg,Hg只在常北社区1和常北社区2两个采样点检测出,分别为0.0040mg/kg以及0.0044mg/kg。这些结果表明研究区水稻根部的这些重金属含量普遍很低,水稻的质量未受到重金属的影响。相关分析结果表明,部分重金属元素之间存在一定的伴生关系,这可能与外源性的污染如工业复合污染、含重金属农药的施用有关。本研究结果表明,张家港市农田受重金属污染比较轻微,达到《土壤环境质量标准》二级标准的要求,但在集中了印染、电镀等污染性企业的区域,重金属含量也相对较高,而在污染企业较少的南部地区农地土壤的清洁状况则比较良好;常北社区和常东社区土壤中Hg含量明显高于其他地区,建议排查该地区土壤中Hg的来源,以遏制Hg污染的加剧;Cu在水稻残留根中的含量是土壤中Cu含量的1.4倍,说明Cu作为一种必需微量元素,水稻根部对Cu的吸收能力较强,因此需要控制过多的Cu进入农田土壤。同时研究区水稻残留根中重金属含量的检测结果间接表明了作物根部吸收的重金属量较低,进一步证实了张家港市农田环境优良,能够满足农业粮食安全生产的要求。重金属污染物具有不可降解性,其一旦造成污染将很难恢复,对粮食作物的质量造成持续性的威胁。尽管目前张家港地区重金属污染较轻,但该市郊区有一定数量的污染性工业企业分布,加上城市扩张的压力,今后仍需对该地区重金属的主要污染来源、主要污染物种类、污染源的分布及辐射粮食作物种植区域的情况进行持续性地跟踪研究。由于生物的富集作用,重金属污染对食物链顶端的人类健康构成严重威胁,因此需继续加强对张家港市粮食作物重金属污染的检测,掌握土壤-粮食作物系统的重金属污染情况,以确保直接供人类食用的农产品的安全。

土壤重金属污染的来源范文篇8

关键词:重金属;污染;研究;治理方法

中图分类号:R155文献标识码:A文章编号:1674-0432(2012)-02-0141-1

1蔬菜是人们日常生活中必不可少的食物,蔬菜质量的优劣直接关系到人们的身体健康

影响蔬菜质量的最大危害是重金属污染。蔬菜中重金属污染主要来自工业“三废”,城镇生活垃圾、污水及农业生产本身。按蔬菜被污染的途径,可有以下几个方面的来源。

1.1污水的灌溉

城市工业的发展和城市化进程的加快,水资源逐渐匮乏,污水灌溉已成为农业灌溉用水的重要组成部分,工业废水中往往含有重金属。大量的不加处理的工业废水和废渣排放江河、湖中,使水资源受到不同程度的污染,蔬菜生产和增产主要靠灌溉。城市工矿区,郊区菜田不得不大量使用工业废水和生活污水灌溉菜田。所以,我国主要的土壤重金属污染区都是由于污水灌溉引起的。

1.2工业废渣

据不完全统计;全国75个城市历年积累的工业废渣和尾矿达715.72亿t,1980年统计78个省市工业废渣共4.8亿t。这些废渣不仅占用了大片土地,而且造成更多的土壤污染。特别是城市近郊区和工矿企业附近的蔬菜地受重金属污染愈来愈严重。

1.3农业生产活动

(1)在农业生产活动中人们为了片面的追求高产,增加效益,大量的施用含有Hg、Cd、Pb、As等不合格的化肥,城市垃圾不经任何处理直接当作肥料施用,导致土壤有机质和作物必需的营养元素含量降低,重金属含量超标,从而影响蔬菜的;(2)农业生产活动中,农用塑料薄膜,生产应用的稳定剂等都含有重金属Cd和As,在大量使用塑料大棚和地膜过程中都可能造成土壤重金属的污染,从而对蔬菜等农作物的生长、产量、品质均有较大的危害。

1.4其他方面来源

随着汽车工业的迅速发展,含Pb汽油的大量使用、汽车尾气的排放、汽车轮胎磨损产生的大量重金属、有毒有害气体、粉尘等,都会引起交通干线附近土壤和蔬菜等作物的重金属污染。还有油中的Cd、镀Cd的工艺等生产或排放过程均将含有Cd废物排入土壤造成污染。此外,还有微生物的污染。

2重金属对人体健康最直接的影响之一就是对食品安全造成威胁

大多数消费者的食品安全观念仅仅在农药残留和食品变质上,对土壤重金属污染影响食品安全的问题知之甚少。而且重金属污染具有潜在性,普通消费者无法从外观上判断农产品是否受重金属污染而避开它。

(1)不同重金属对身体危害不同,对人体危害最大的是有机汞,它不仅毒性高,能伤害大脑,而且比较稳定,在人体内停留的半寿命长达70d之久,所以即使剂量很少也可累积致毒。可见,重金属给人类带来的危害是无法估量的,因此,无污染蔬菜的生产正日益受到人们的重视。

(2)目前,菜地和蔬菜遭受到污染是十分严重的,已经暴露出来的重金属和硝酸盐的污染必须给以足够的重视。土壤污染对蔬菜影响较大的重金属有Cd、Hg、Cr、As等。

3治理土壤中重金属的方法

我们通过对各种蔬菜做实验找到不同蔬菜超标时的土壤临界浓度,通过控制和治理土壤中的重金属含量来控制蔬菜中重金属的含量。由于蔬菜重金属的主要来源是土壤,我们可以通过以下几个方面对土壤中的重金属进行治理。

3.1土壤污染的防治

土壤污染可采用工程措施,它包括:(1)客土法:就是在污染土壤上加入净土。但客人的土应尽量选择比较粘重或有机质含量高的土壤,以增加土壤容量,减少客土量。本法适应于浅根植物和移动性较差的污染物。(2)换土法:就是将已污染的土壤移去,换上新土;而换土法对小面积严重污染且污染物是有放射性或易扩散难分解的土壤是必须的,以防止扩大范围,危害人畜健康。

3.2加强对工业“三废”的治理和综合利用

(1)禁止使用未经处理的工业污水灌溉农田。在积极慎重地推广污水灌溉的同时,对灌溉农田的污水,必须进行严格的监测和控制。(2)减少工业废水和生活污水的排放量,发展区域性污染防治系统,包括制定区域性水质管理规划,合理利用自然净化能力,实行排放污染物的总量控制,调整工业布局,改变产品结构,除此之外,还应有完善的管理措施。工业布局要合理,改变燃料的燃烧方法,绿化造林,采用高烟囱和高效除尘设备,采取集中供热,减少交通废气污染,施用低毒、低残留的农药等。(3)选择未受工业废水、废渣、废气污染的农田,在远离城市的工矿企业、医院、生活垃圾、生活用水等污染源的地区建立蔬菜生产基地。

3.3对粪便、垃圾和生活污水进行无公害化处理

土壤重金属污染的来源范文1篇9

原因多,修复难

造成土壤污染的原因有诸多方面。国务院发展研究中心资源与环境政策研究所“土壤污染综合防治政策研究”课题负责人吴平在接受采访时表示,首先是长期过度施用农药、化肥,以及污水灌溉造成土壤污染,我国每年化肥施用量超过4100万吨,污水灌溉农田面积超过330万公顷。其次,在大中城市及工矿业发达地区,矿石冶炼、燃煤等工业“三废”排放活动是土壤污染的主要原因。再次,南方省份土壤重金属天然含量高,加上耕地土壤日趋酸化导致重金属污染加剧。此外,工业固体废物和城市垃圾向土壤直接倾倒,经过日晒、雨淋、水洗,污染得以辐射状、漏斗状向周围土壤扩散,造成周围土壤甚至地下水的严重污染。铀矿和钍矿开采、核废料处理、燃煤发电厂、磷酸盐矿开采加工等产生的放射性物质,也会对土壤造成污染。

污染土壤修复表现为一个技术问题,但中国环境科学院总工程师李发生在接受采访时多次强调,工程的总体设计需要美学支撑。他指出,场地修复事业中的人文科学,包括人的素质、人文环境,也包括所匹配的政策。“场地修复中的人文问题目前在国内极少被关注。比如修复公司应以承担社会责任的态度去工作,这样许多问题就容易解决了。甚至,我们应该更进一步地去考虑场地修复工作的美学建设、景观恢复问题,采取措施降低能耗等。”他主张美学管理要在第一时间介入场地修复设计,“污染场地到底适合做什么,在一开始就应该统筹规划。国内通常更多地强调使用功能,不会考虑那么深远。事实上,修复是对污染场地的优化过程,要寻求对环境影响最小、视觉效果最好、更加安全的解决方案。”

同时,李发生认为,污染土壤修复产业需要各利益相关方共同参与,处理好各方关系本身就是一个复杂的系统问题。“首先是污染企业,其次是政府,然后是参与土壤修复的企业,还有更重要的是老百姓。考虑到很多污染企业是国有企业,在协调利益关系时国家干预也格外重要。”他强调,在协调土地开发商、公众、土壤修复企业、政府关系中,注重顶层制度设计,平衡各方利益,使这项事业健康有序地发展。让和谐的人文之美与先进的修复技术相结合,恢复土壤的生态原貌。

公众参与机制不畅也是导致重金属污染问题难以得到及时有效解决的问题之一,北京师范大学环境学院博士生导师程红光认为,信息不对称是治理难的重要原因。因为企业的污染只有企业最清楚,公众并不是特别地了解企业的污染状况,也不具有相关的专业能力和知识水平。他告诉记者,要解决重金属污染问题,关键在于要以人体健康为指挥棒,转变环保相关工作的工作方式和重点,需要规划、产业、环保、水利和卫生等部门齐抓共管,控制重金属污染的暴露渠道。他建议,从提高重金属污染监测的能力、建立信息公开制度、完善权力分配体制等多个方面完善重金属污染防治体系。

修复产业,迎来初生但空间巨大

土壤重金属污染的来源范文

关键词:重金属污染;主要原因;修复技术

Abstract:Sincetheimplementationofthepolicyofreformandopeningup,inamarketeconomyenvironmentandconditions,China'ssocialistmodernizationconstructionhasmaderapiddevelopmentandprogress,increasinginternationalstatus,people'slivingstandardandqualityoflifehasbeengreatlyimproved,Chinahasenteredaneweraofall-rounddevelopment.Butwiththerapiddevelopmentofeconomy,theenvironmentalpollutionproblemshavebecomeincreasinglyprominent,decreasethequalityoflivingenvironment,notonlydoesharmtopeople'shealth,butalsobringssomeseriousconsequencesfortheother,graduallybecomeaglobalhottopic.Thispapermainlyfromthetwoaspectsofthemainreasonscausingsoilheavymetalpollutionandsoilheavymetalpollutionremediationtechnologywerediscussed.

Keywords:heavymetalpollution;mainreason;repairtechnology

中图分类号:[TU984.11+5]

引言:土壤重金属污染给人们所带来的危害具有长期性、潜在性的特点,近年来随着城镇化进程的不断加快和工业生产的发展,越来越多的有害物质进入到了土壤中,因此我们必须要充分了解土壤中重金属的来源,并积极应用各种各样的土壤重金属污染修复技术,最大限度地缓解土壤重金属污染,给人们创造一个更加健康舒适的生活环境,从根本上提高人们的生活质量。土壤重金属污染作为环境污染的一个重要方面,不仅破坏了生态环境,同时也给人们的正常生产和生活带来了极大的威胁,因此对于这一问题,相关部门和人员必须要给予足够的重视,积极采取有效措施加以解决。

一、造成土壤重金属污染的主要原因

1.工业三废的排放

在我国,矿产冶炼加工、化工、电镀、电池、以及塑料等行业所排放的重金属是造成土壤重金属污染的主要工业源,由于大多数工业企业污染物处理意识淡薄,并没有配备足够的处理设备,就使得工业废水、废气、废渣等不断排放到土壤或者是水体中,造成严重的环境污染,危害人们的身体健康。

2.燃煤释放

当前我国使用范围最广的能源依然是煤炭,不仅是因为我国的煤炭资源储量丰富,同时也是由于其价格相对较低,这就造成煤炭燃烧时向空气中排放大量的有害气体,这些气体经过沉降就会进入到土壤中,对土壤造成污染,进而对人体健康和整个生态系统产生长期效应。

3.垃圾的堆放

如果垃圾堆放的时间较长,就会使其中的重金属进入到土壤中,导致区域土壤的重金属含量大量增加。特别是城市垃圾中含有较多的重金属,在雨水的冲刷之下会将其中的有毒元素释放到土壤中,由于这些有毒元素大多以有效态的形式存在,难以结合成残渣状态,就使得其在土壤中具有较大的迁移能力,进而对地下水造成污染。

4.化肥和农药的使用

化肥和农药是农业生产中必不可少的物资,对于促进农业生产发展具有非常重要的意义,但是如果使用不合理就会使土壤遭受重金属污染。这是因为在化肥和农药中含有较多的重金属元素,而土壤自身的环境容量又相对较低,长期使用会积累超标含量的重金属,进而使农产品受到污染,一旦食用就会对人体造成伤害。

二、土壤重金属污染修复技术

1.工程修复

工程修复主要指的是采用换土、客土、以及深耕翻土等一些措施,有效降低土壤中的重金属含量,从而减少对植物系统的毒害,保障农产品安全。一般,换土法和客土法主要用来治理重污染区,而深耕翻土法则主要用于重金属污染程度较轻的区域。总的来讲,工程修复比较稳定、彻底,但是由于工程量比较大,成本费用较高,还容易对土体机构造成破坏。

2.物理修复技术

主要分为电热修复、土壤淋洗、电动修复等。针对面积小且污染重的土壤进行修复,适应性广,也是一种治本的措施,但在操作中可能发生二次污染破坏土壤结构并导致肥力下降。

(1)电热修复。电热修复是指通过高频电压产生热能和电磁波,加热土壤,将土壤颗粒中的污染物解吸出来,并从土壤内分离出易挥发的重金属,达到修复的效果。主要针对修复土壤被Se或Hg等重金属污染的情况。此外,也可以将土壤置于高温高压中,使之变成玻璃态物质,最终从根本上修复了土壤中重金属的污染。

(2)土壤淋洗。淋洗法是指用淋洗液冲洗受到污染的土壤,将吸附在土壤颗粒中的重金属变成金属试剂络合物或溶解性离子,再收集淋洗液并回收重金属。此法适用于轻质土壤,修复效果相对较好,但其花费也相对较高。

3.化学修复

化学修复即向土壤中施加改良剂,利用改良剂的吸附、拮抗、氧化还原、以及沉淀等作用,有效降低重金属自身的生物有效性。由于不同的改良剂对土壤中的重金属会产生不同的作用,因此这项技术的重点在于要选择最为合适的改良剂,比较常用的改良剂主要有石灰、硅酸盐、磷酸盐、以及碳酸钙等。但是化学修复是在土壤原位上进行的,并不具有永久性,它只是改变了土壤中的重金属形态,而重金属元素依然存留在土壤中,很容易活化再次危害植物。

4.生物修复

生物修复是一种通过生物技术来修复土壤的新方法。主要利用生物去削减、净化重金属或降低其毒性。此法效果好又易于操作,因而越来越受到人们的青睐,成为几年来污染土壤修复研究中的热点。

(1)植物修复技术。这是一种通过自然生长和遗传作用来培育植物对受重金属污染的土壤进行修复的技术。根据机理和作用过程的不同,此修复技术又可分为植物提取、植物稳定和植物挥发三种类型。

①植物提取。用重金属超积累植物把从土壤中吸收到的重金属污染物转移到地上的部分,再收割地上部分并对其进行集中处理,从而降低土壤中的重金属含量,并达到可以接受的水平。

②植物稳定。用超累积植物或耐重金属植物使重金属的活性降低,减少了重金属通过空气扩散而污染环境或是被淋洗入地下水中的可能性。

(2)微生物修复技术。通过土壤中存在的某些微生物能氧化、沉淀、吸收或还原金属物质,从而降低了土壤中金属的毒性。此外,存在于微生物细胞中的金属硫蛋白对Cu、Hg、Cd、Zn等重金属有强烈的亲和性,而且它对重金属也有富集作用最终能抑制毒性的扩散。但微生物只能对小范围污染的土壤进行修复,因此其能力有限。

三、结束语

科学技术的发展在很大程度上促进了经济的发展和社会的进步,深刻改变了人们的生产和生活方式,具有非常重要的作用。因此,在当前土壤重金属污染日益严重的情况下,我们必须要积极利用各种形式的土壤修复技术来缓解重金属污染、改善土壤质量,为人们创造一个健康安全的生活环境,更好地促进社会主义现代化建设的发展。

参考文献:

[1]王海峰,赵保卫,徐瑾,车海丽.重金属污染土壤修复技术及其研究进展[J].环境科学与管理.2009(11).

[2]袁敏,铁柏清,唐美珍.土壤重金属污染的植物修复及其组合技术的应用[J].中南林学院学报.2007(01).

土壤重金属污染的来源范文篇11

关键词:公路;蔬菜;重金属;特征;因素

中图分类号:X53文献标识码:A文章编号:0439-8114(2015)05-1186-04

DOI:10.14088/ki.issn0439-8114.2015.05.040

Abstract:BasedsurveyingPbincabbageinJanuary2014andenvironmentalfactorsinthefarmlandalongthehighwayinJiangxiprovince,Pbdistributioninsoilandvegetablesanditsrelationshipwiththetrafficflowofhighwaywasstudied.TheresultsshowedthatPbcontentofnationalroadandthehighwayabovenationallevelwerehigherthanthatoflocalsoilbackgroundvalues.Theseareaswereclassifiedintothecontaminatedarea.Pbcontentofvegetablesneartheroadwasinthestate-controlledrange.Indexofthesinglefactorpollutionwashigherthan1,withcertainpotentiallyharmful.TheaveragecontentofPbinsuburbsoilwasbelowthebackgroundvalueandclassifiedintothepollution-freearea.ThecontentofPbinsuburbvegetableswasverylow.Roadtrafficenvironmentwasanimportantfactoraffectingsoilpropertiesandthedistributionofheavymetalsinvegetables.TrafficflowandthecontentofPbinsoilsandvegetableswassignificantlypositivecorrelated.

Keywords:highway;vegetables;heavymetals;characteristic;factors

以往,人们主要关注蔬菜、瓜果的农药残留与控制等问题,这是因为某些农药对人体的危害表现为急性中毒。但重金属残留是一种慢性中毒,不容易被察觉,一旦发现则难以治疗[1]。城市化、工业化进程中矿山开采、金属冶炼、工业废水、化石燃料的燃烧、施用农药化肥、生活垃圾等人为因素和地质侵蚀、风化等天然因素均能引起重金属的污染[2]。

公路作为人类赖以生存的依托条件,是人类生活必不可少的资源,中国人口大部分在公路沿线密布,公路对居民的影响至关重要。高速公路作为交通干线主要组成部分,连接了国家90%以上的大中型城市。公路重金属污染属于线源式污染,短时间内毒性强,污染严重。长期会在周围环境中逐渐富集,潜在危害性强[3],线源式污染比点源式污染流动性强,难以控制。公路沿线农业发达,蔬菜种植面广,分布零散,但蔬菜的种植并不像大棚种植那样严格控制生长条件和营养条件,易受到周围环境因素的影响,而这些因素恰恰被老百姓所忽视,长此以往会严重危害食用者的身体健康[4]。近年来关于不同土壤蔬菜中重金属的污染和公路旁土壤重金属的污染已有较深入的研究,孙清斌等[5]通过研究大冶矿区土壤-蔬菜重金属污染特征得出矿区土壤不同重金属污染程度及对人体健康的潜在危害风险。李仰征等[6]研究了公路旁土壤重金属空间分布及其与理化性质的关系,指出土壤重金属水平方向分布总体表现为公路临近区域积累较强。公路重金属污染以Pb为主[7],大量研究表明叶菜中Pb含量最大,本研究以公路临近区域大白菜及土壤中重金属为研究对象,得出其变化特征及影响因素,为解决临近公路蔬菜安全利用和污染防治及当地居民饮食健康问题提供一定的参考依据。

1材料与方法

1.1样品采集

1.1.1采样点的设置在江西境内4条颇具代表性的交通道路及2个背景区域(郊区)进行调查采样,距离路基10m内,采集农田土壤和大白菜。采样点为沪昆高速、德昌高速、乐平206国道、玉山320国道、乐平郊区和新余郊区。

1.1.2采集方法蔬菜用多点混合法[8]采集,每个采样区域采集蔬菜样品6个,共获取蔬菜样品36个。农田土壤样品采于蔬菜生长的根区土壤,即采集农作物生长的耕作层(0~20cm)作为土壤样品[9]。每个样品在10m×10m正方形4个顶点和中心共5处各采集1kg土壤,将5处土壤充分混匀后以四分法保留1kg土壤作为该点样品,每个采样区域采集土壤样品3个,共获取土壤综合样18个。土样经自然风干后剔除碎石、植物根系、有机残渣等杂物,磨碎后,过20目尼龙筛,混匀备用[10]。

1.2样品处理和分析

1.2.1样品预处理土壤样品采用高压密闭消解法[11],蔬菜样品的预处理选择湿式消解法[12]。

1.2.2样品测定Pb的测定选用石墨炉原子吸收光谱法[13]。

1.2.3分析方法单因子指数法可用于分析土壤和蔬菜中重金属的污染程度,计算公式如下:

Pi=Ci/Si(1)

式中,Pi为污染物单因子指数;Ci为实测浓度,mg/kg;Si为土壤环境质量标准或蔬菜国家限量值,mg/kg。Pi>1表示受到污染,Pi

2结果与分析

2.1公路临近区域土壤中Pb含量的分布特征

不同公路段土壤重金属Pb的统计结果见表2。高速及国道临近公路土壤中Pb含量高于远离公路的郊区土壤。临近公路蔬菜中Pb含量呈现为高速路高于国道,国道高于郊区。

以江西土壤自然背景值32mg/kg为标准,沪昆高速和昌德高速临近土壤重金属Pb平均超标分别是1.62和1.06倍,最高超标为2.32和1.34倍,存在明显的累积现象;乐平206国道临近土壤重金属Pb平均值未超过当地土壤背景值,积累较弱;玉山320国道土壤Pb的平均值是当地背景值的1.24倍,最高值是土壤背景值的1.39倍,存在较明显的累积现象;乐平郊区、新余郊区土壤中Pb的最高值虽然超过了当地的土壤背景值,但是其平均值均未超出当地的土壤背景值,不存在Pb累积现象。

2.2邻近公路蔬菜中Pb含量特征

我国蔬菜重金属的主要评价标准如表3所示,1~4级可视为无公害绿色蔬菜,5级为国家食品安全限量标准。沪昆高速和德昌高速公路临近区域蔬菜中Pb含量的平均值均超过了国家食品安全标准,其中超过国家限量的样品分别占69.0%、78.0%,不宜食用;乐平206国道和玉山320国道蔬菜中Pb含量的平均值均大于0.2mg/kg,超过了绿色蔬菜范畴但未超过安全标准,其中3~4级之间的样品分别占47.6%、50.5%,说明样品区属于中度或者轻度的污染区,存在较小的风险;乐平郊区和新余郊区蔬菜中重金属Pb含量的平均值均小于0.2mg/kg,其中在3级以下的分别占60.0%、49.3%,属于无公害绿色蔬菜,适于广大居民的食用。

2.3不同公路段蔬菜和土壤中Pb的差异

临近高速公路和国道蔬菜中Pb的单因子污染指数均大于1,而远离公路的郊区蔬菜中Pb的单因子污染指数均小于1;临近公路蔬菜中Pb的单因子污染指数大于相应土壤中Pb的单因子污染指数,而郊区蔬菜中Pb的单因子污染指数小于相应土壤中Pb的单因子污染指数(表4)。蔬菜中Pb变异系数的平均值远大于土壤中Pb变异系数的平均值,以沪昆和德昌高速附近蔬菜表现最明显,说明蔬菜对Pb的富集作用比土壤对Pb的富集作用更复杂,公路对蔬菜中Pb的迁移具有很大的影响(表5)。

2.4交通对蔬菜重金属Pb的影响

蔬菜种植受到土壤、水体灌溉、施肥等诸多因素的影响,临近公路的蔬菜种植受交通源的影响,不同公路段临近蔬菜中Pb含量具有差异性,公路源中的车流量是污染蔬菜的主体因素。从本研究的结果来看,首先,临近公路蔬菜受到不同程度的重金属Pb的影响,其中沪昆高速公路沿线蔬菜中Pb含量最高,污染最严重,公路样本区蔬菜中的Pb含量均超过了无公害蔬菜的限值,说明临近公路蔬菜中Pb污染具有一定的普遍性,这可能与交通污染源有关,交通环境重金属的来源主要有机动车尾气的排放、燃油的蒸发、油料泄漏、汽车金属部件和轮胎的磨檫磨损、沥青或路面的磨损老化、融雪(冰)剂等道路维护化学物质[16,17]。其次不同公路源对Pb的污染程度不同,如表4,根据单因子污染指数,蔬菜中Pb的污染程度表现为德昌高速>沪昆高速>乐平206国道>玉山320国道>新余郊区>乐平郊区,总体而言公路>郊区,高速、国道与乡道最大的差异是交通量的不同,因此,蔬菜中Pb含量受交通量的影响,钱鹏等[18]的研究表明大气颗粒物中Pb浓度随车流量的增加而增加,证明了交通活动是Pb等重金属的主要来源,这与本研究的结果一致。

交通源可以通过影响土壤的中Pb含量和理化性质间接影响蔬菜中Pb的含量,也可以以大气沉降和漂移等途径直接影响蔬菜中Pb的含量,公路源产生的重金属Pb对蔬菜的污染程度高于对土壤的污染。大量的研究结果表明,公路源污染可以改变土壤的pH、有机质、盐度等理化性质和重金属的含量及其Pb的存在形态,进而影响蔬菜等农作物对营养物质的吸收和重金属在蔬菜等植物体内的富集[19-20]。本研究结果表明,一方面,高速路和国道采样区蔬菜中Pb的变异系数>土壤中Pb的变异系数,说明蔬菜对Pb的富集和迁移作用明显,同时也表明土壤并不是蔬菜中Pb的唯一来源,蔬菜中Pb一部分来自于机动车辆尾气的大气颗粒物沉降和地面扬尘的溅射,方凤满等[21]的研究表明芜湖市三山区蔬菜中重金属的积累并不完全决定于土壤重金属的全量,这与本研究临近公路蔬菜中Pb的污染特征具有相似性。另一方面,根据单因子污染指数,高速公路Pb的污染程度大于相应土壤中污染程度,高速公路设有排水沟、防护林可以有效地减缓雨水冲涮和径流带来的污染[6],可以近似认为土壤Pb来自于含Pb颗粒物的大气沉降,由于土壤面积大,土壤比表面积小,雨水稀释度高,而蔬菜承载降水量较小,比表面积大,并且蔬菜可以从土壤中吸收Pb,所以在相应的土壤背景值和蔬菜标准值一定的条件下,蔬菜中的Pb污染程度高于土壤中Pb的污染。

公路交通量不仅是构成交通环境的主要因素,还是影响邻近公路土壤和蔬菜中重金属含量特征的主导因素,即交通量越发达、交通流量越大,其沿线土壤和蔬菜重金属污染越严重,随交通环境的变化,土壤和蔬菜中重金属Pb的含量有显著的相关关系,呈现一定的线性关系。本研究结果表明,首先,不同的公路重金属含量表现出明显的不同,对土壤而言沪昆高速>玉山320国道>德昌高速>乐平206国道>乐平郊区>新余郊区,对蔬菜而言德昌高速>沪昆高速>乐平206国道>玉山320国道>新余郊区>乐平郊区,整体而言临近高速公路蔬菜中Pb含量>临近一般公路蔬菜中Pb含量>郊区蔬菜中的Pb含量,表明交通流量大的区域土壤和蔬菜中重金属Pb含量高,陈长林等[22]的研究表明土壤两侧重金属污染随着运营时间的延长和交通流量的增加而越来越强,这与本研究的蔬菜中的Pb含量的变化和污染具有相似性。其次,根据对这几条公路交通流量的跟踪调查,做出交通量与邻近公路土壤和蔬菜中重金属Pb的散点图,添加变化趋势曲线,如图1和图2所示。

邻近公路土壤中的重金属Pb和蔬菜中的Pb含量与交通量的线性关系非常好,R2值分别为0.9060和0.8207,呈现显著的正相关关系。

3小结与结论

1)蔬菜种植受到临近公路的影响,不同的交通源对蔬菜中重金属含量的影响存在着显著差异,国道及其国道级以上的公路临近蔬菜中的Pb平均含量均超过了国家无公害绿色蔬菜的限值,属于污染蔬菜,而郊区等远离公路的地区蔬菜中Pb平均含量的平均值小于0.2mg/kg,在无公害蔬菜范畴之内。

2)推测交通源运营过程中机动车辆尾气、路面沥青、油料泄漏等污染源产生的Pb可以通过影响土壤中的Pb含量和理化性质间接影响蔬菜中Pb的含量,也可以通过大气沉降和漂移等途径直接影响蔬菜中Pb的含量,公路源对蔬菜的污染程度高于对相应土壤的污染程度。

3)交通流量构成的交通环境对于公路沿线土壤和蔬菜的重金属污染有非常密切的正相关关系,交通越发达、交通流量越大,其沿线土壤和蔬菜受重金属污染越严重。土壤和蔬菜中重金属Pb的含量和污染分布规律为:高速公路>一般公路>郊区。

参考文献:

[1]黄国勤.江西省土壤重金属污染研究[A].中国环境科学学会.2011中国环境科学学会学术年会论文集(第二卷)[C].乌鲁木齐:中国环境科学学会,2011.

[2]CYRUSJ,STOLEM,HEINRICHJ,etal.ElementalcompositionandsourcesoffineandultrafineambientparticlesinFurthest,Germany[J].ScienceoftheTotalEnvironment,2003,305(1-3):143-156.

[3]王其枫,王富华,孙芳芳,等.广东韶关主要矿区周边农田土壤铅、镉的形态分布及生物有效性研究[J].农业环境科学学报,2012,31(6):1097-1103.

[4]WANGXL,CATOT,DINGBS,etal.HealthrisksofheavymetalstothegeneralpublicinTianjin,Chinaviaconsumptionofvegetablesandfish[J].ScienceoftheTotalEnvironment,2005,350(1-3):28-37.

[5]孙清斌,尹春芹,邓金锋,等.大冶矿区土壤-蔬菜重金属污染特征及健康风险评价[J].环境化学,2013,32(4):671-672.

[6]李仰征,莫世江,马建华.公路旁土壤重金属空间分布及其与理化性质的关系[J].湖北农业科学,2014,53(3):528-529.

[7]李吉锋.关中公路土壤重金属污染及潜在生态危害分析[J].土壤通报,2013,44(3):744-745.

[8]王学锋,姚远鹰.107国道两侧土壤重金属分布及潜在生态危害研究[J].土壤通报,2011,42(1):175-177.

[9]邵莉,肖化云,李南,等.高速公路沿线路面灰尘及土壤中重金属污染特征研究[J].地球与环境,2013,41(6):666-667.

[10]赵金璇,李玉锋,梁佳,等.贵阳和万山地区部分蔬菜中的重金属含量及其健康风险[J].生态毒理学报,2009,4(3):392-398.

[11]李静,常勇.土壤重金属污染评价方法的研究[J].农业灾害研究,2012,20(4):50-52.

[12]林小红,张立平,魏长金.湿式消解法测定茶叶中铜、铅、锌、铁含量[J].预防医学论坛,2008,14(4):324-327.

[13]安代志,王莉莉,岳丽君,等.塞曼火焰原子吸收与石墨炉原子吸收法测定明胶空心胶囊壳中铬的方法比较[J].药物分析杂志,2012,32(8):138-142.

[14]徐光炎,何纪力,郭依勤,等.江西省地区土壤环境质量评价标准[J].中国环境监测,1992,8(3):6-7.

[15]GB2762-2012,食品安全国家标准[S].

[16]BJORKK,GERDW.HeavymetalpatternandsoluteconcentrationinsoilsalongtheoldesthighwayoftheworldCtheAVUSautobahnenviousmonitassess[J].EnvironmentMonitAssess,2012,184(11):6469C6481.

[17]DANIELP,LOFTS,KOCHABA,etal.OxidationdamagetoDNAandrepairinducedbyNorwegianwoodsmokeparticlesinhumanA549andTHP-1celllines[J].MutatRes,2009,674(1-2):116-122.

[18]钱鹏,郑祥民,周立F,等.312国道沿线土壤、灰尘重金属污染现状及影响因素[J].环境化学,2010,29(6):1141-1145.

[19]GILDAR,CATALINR,IONELI,etal.AirpollutionparticlesPM10,PM2.5andtheapostropheozoneeffectsonHumanhealth[J].Proceed-SocialandBehavioralSciences,2013,92:826-831.

[20]张辉,马东升.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学,1998,17(6):564-568.

土壤重金属污染的来源范文

关键词:化工,土壤污染,重金属,防治

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。随着工业、城市污染的加剧和农用化学物质种类、数量的增加,土壤重金属污染日益严重,土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。

一、重金属的来源、种类

1.土壤重金属来源广泛,主要包括有大气降尘、污水灌溉、工业废弃物得不当堆置、矿业活动、农药和化肥等。首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。

2.大气中重金属沉降、大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。

3.农药、化肥和塑料薄膜使用施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属Hg、Cd、As、Zn、Pb,磷肥次之,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中As和Cd污染严重。农用塑料薄膜生产应用的热稳定剂中含有Cd、Pb,在大量使用塑料大棚和地膜过程中都可以造成土壤重金属的污染。

4.污水灌溉污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。由于城市工业化的迅速发展,大量的工业废水涌入河道,使城市污水中含有的许多重金属离子,随着污水灌溉而进入土壤。

5.含重金属废弃物堆积含重金属废弃物种类繁多,不同种类其危害方式和污染程度都不一样。污染的范围一般以废弃堆为中心向四周扩散重金属在土壤中的含量和形态分布特征受其垃圾中释放率的影响,且随距离的加大重金属的含量而降低。由于废弃物种类不同,各重金属污染程度也不尽相同,如铬渣堆存区的Cd、Hg、Pb为重度污染,Zn为中度污染,Cr、Cu为轻度污染。

6.金属矿山酸性废水污染金属矿山的开采、冶炼、重金属尾矿、冶炼废渣和矿渣堆放等,可以被酸溶出含重金属离子的矿山酸性废水,随着矿山排水和降雨使之带入水环境(如河流等)或直接进入土壤,都可以间接或直接地造成土壤重金属污染。

二、土壤中重金属污染物现行治理方法

1.工程治理方法

工程治理是指用物理或物理化学的原理来治理土壤重金属污染。主要有:客土是在污染的土壤上加入未污染的新土;换土是将以污染的土壤移去,换上未污染的新土;翻土是将污染的表土翻至下层;去表土是将污染的表土移去等。

2.此外淋洗法

用淋洗液来淋洗污染的土壤;热处理法是将污染土壤加热,使土壤中的挥发性污染物(Hg)挥发并收集起来进行回收或处理;电解法是使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走。以上措施具有效果彻底、稳定等优点,但实施复杂、治理费用高和易引起土壤肥力降低等缺点。

3.生物治理方法

生物治理是指利用生物的某些习性来适应、抑制和改良重金属污染。主要有:动物治理是利用土壤中的某些低等动物蚯蚓、鼠类等吸收土壤中的重金属;微生物治理是利用土壤中的某些微生物等对重金属具有吸收、沉淀、氧化和还原等作用,降低土壤中重金属的毒性,如原核生物(细菌、放线菌)比真核生物(真菌)对重金属更敏感。

4.植物治理

利用某些植物能忍耐和超量积累某种重金属的特性来清除土壤中的重金属;目前已发现400多种,超积累植物积累Cr、Co、Cu的含量一般在0.1%Ni、Pb以上,积累Mn、Zn含量一般在1%以上。生物治理措施的优点是实施较简便、投资较少和对环境破坏小,缺点是治理效果不显著。

5.化学治理方法

化学治理就是向污染土壤投入改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量,改变pH、和电导等理化性质,Eh使土壤重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。

三、总结

土壤重金属污染首先应从源头抓起,控制污染源,土壤重金属的污染已经达到相当严重的程度,要充分认识土壤重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点。土壤质量问题是经济可持续发展和社会全面进步的战略问题,它直接影响土壤质别、水质状况、作物生长、农业产量、农产品品质等,并通过食物链对人体健康造成危害。对土壤质量的保护便是对耕地生产能力的保护,更是提高土地利用效率的强有力措施之一。对于我国这样一个人口众多的农业大国,开展国土质量调查评价,对土壤重金属污染物进行试验研究,开发耕地污染的治理方法和技术,显得更为必要和迫切。

参考文献

[1]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35