继电保护的概念篇1
论文摘要:城市电网配电系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保城市电网配电系统的正常运行。必须正确地设置继电保护装置。
1继电保护的基本概念
可靠性是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力。可靠性工程涉及到元件失效数据的统计和处理,系统可靠性的定量评定,运行维护,可靠性和经济性的协调等各方面。具体到继电保护装置,其可靠性是指在该装置规定的范围内发生了它应该动作的故障时,它不应该拒动作,而在任何其它该保护不应动作的情况下,它不应误动作。
继电保护装置的拒动和误动都会给电力系统造成严重危害。但提高其不拒动和提高其不误动作的可靠性的措施往往是互相矛盾的。由于电力系统的结构和负荷性质的不同,拒动和误动所造成的危害往往不同。例如当系统中有充足的旋转备用容量,输电线路很多,各系统之间和电源与负荷之间联系很紧密时由于继电保护装置的误动作,使发电机变压器或输电线路切除而给电力系统造成的影响可能很小;但如果发电机变压器或输电线路故障时继电保护装置拒动作,将会造成设备的损坏或系统稳定的破坏,损失是巨大的。在此情况下提高继电保护装置不拒动的可靠性比提高其不误动的可靠性更为重要。但在系统中旋转备用容量很少及各系统之间和负荷和电源之间联系比较薄弱的情况下,继电保护装置的误动作使发电机变压器或输电线切除时,将会引起对负荷供电的中断甚至造成系统稳定的破坏,损失是巨大的。而当某一保护装置拒动时,其后备保护仍可以动作而切除故障,因此在这种情况下提高继电保护装置不误动的可靠性比提高其不拒动的可靠性更为重要。
2保护装置评价指标
2.1继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:①正常运行状态。这是保护装置的正常状态。②检修状态。为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。③正常动作状态。这是指被保护元件发生故障时,保护装置正确动作于跳闸的状态。④误动作状态。是指保护装置不应动作时,它错误动作的状态。例如,由于整定错误,发生区外故障时,保护装置错误动作于跳闸。⑤拒动作状态。是指保护装置应该动作时,它拒绝动作的状态。例如,由于整定错误或内部机械故障而导致保护装置拒动。⑥故障维修状态。保护装置发生故障后对其进行维修时所处的状态。
2.2目前常用的评价统计指标有
2.2.1正确动作率即一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。用公式表示为:
正确动作率=(正确动作次数,总动作次数)×100
用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kv与500kv)之间的对比情况,从中找出薄弱环节。
2.2.2可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。
2.2.3可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t正常工作的概率。可靠度与可用率的不同在于,可靠度中的定义要求元件在时间区间(0,t)连续的处于正常状态,而可用率则无此要求。
2.2.4故障率是指元件从起始时刻直到时刻t完好条件下,在时刻t以后单位时间里发生故障的概率。
2.2.5平均无故障工作时间建设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。
2.2.6修复率m(t)是指元件自起始时刻直到时刻t故障的条件下,自时刻t以后每单位时间里修复的概率
2.2.7平均修复时间mttr平均修复时间是修复时间的数学期望值。
310kv供电系统继电保护
10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。
3.110KV供电系统的几种运行状况
3.1.1供电系统的正常运行这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况;
3.1.2供电系统的故障这种状况系指某些设备或线路出现了危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况:
3.1.3供电系统的异常运行这种状况系指系统的正常运行遭到了破坏,但尚未构成故障时的运行状况。
3.210KV供电系统继电保护装置的任务
3.2.1在供电系统中运行正常时,它应能完整地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据:
3.2.2如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行:
3.2.3当供电系统中出现异常运行工作状况时,它应能及时地、准确地发出信号或警报,通知值班人员尽快做出处理。
3.3几种常用电流保护的分析
3.3.1反时限过电流保护继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护虽外部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。
3.3.2定时限过电流保护继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。
继电器的构成。定时限过电流保护是由电磁式时间继电器(作为时限元件)、电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。
定时限过电流保护的基本原理。在10kV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。
动作电流的整定计算。过流保护装置中的电流继电器动作电流的整定原则,是按照躲过被保护线路中可能出现的最大负荷电流来考虑的。也就是只有在被保护线路故障时才启动,而在最大负荷电流出现时不应动作。
继电保护的概念篇2
关键词:智能配电网;继电保护技术;电力系统
中图分类号:F406文献标识码:A文章编号:
1、配电网继电保护基本概念
配电网继电保护(distributionnetworkrelayprotection)当配电网中的电力设备发生故障或出现影响安全运行的事件时,以终止这些故障或事件发展造成对配电网进一步破坏的自动化设施和装备。这种性质的自动化装备的特点是非调节性的(即突然投人或切除某一设备)和要求快速动作。实现这种用于保护电网元件和线路的自动化成套硬件统称为继电保护装置。在整个配电网中的各个分散的继电保护装置要求相互协同配合,并按预定顺序进行工作,从而在配电网中形成一个庞大的继电保护系统,简称继电保护。继电保护装置功能尽可能在最短的时间和最小的区间内自动把发生故障的线路、变压器或其它电气设备从电网中断开,以减轻故障设备的损毁和对电网的影响。安全自动装置功能尽快消除电网出现的异常事件,防止电网大面积停电和保持对重要用电户连续供电,在事故后迅速恢复电网的正常供电和运行,例如自动重合闸、备用电源自动投入、自动切除供电负荷等。
继电保护的基本要求可归纳为可靠性、快速性、选择性、灵敏性四个方面。
(1)可靠性。是对保护的基本要求,是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力。它又分为可信赖性和安全性两个方面。可信赖性要求继电保护在设计要求它动作的悄况下能够正确地完成动作。安全性要求继电保护在非设计要求它动作的其他所有情况下能够可靠地不动作。继电保护装置的拒动和误动都会给电力系统造成严重危害。但提高其不拒动和提高其不误动作的可靠性的措施往往是互相矛盾的。
(2)快速性。是以允许的可能最快的速度动作于断路器跳闸。
(3)选择性。是继电保护在对电网影响可能最小的处所实现对断路器的控制操作,以终止故障和配电网事故的扩大。
(4)灵敏性。是继电保护对设计规定要求动作的故障或异常事件的能够动作反应的能力,一般都有具体的规定。
2、配电网继电保护的重要性
继电保护工作作为电网工作中的一个重要组成部分,其工作责任大、技术性强、任务繁重。继电保护工作人员每天面对诸如电网结构、保护配置、设备投退、运行方式变化及故障情况等各种信息,对它们进行正确的分析、处理和统计,工作十分繁重,并且上下级局之间、局与各厂站之间存在着许多重复性数据录入及维护工作。为了减轻继电保护工作人员的工作强度,提高劳动生产率,开发继电保护信息管理系统已成为电网发展的一个必然要求。
3、继电保护装置评价指标
3.1配电系统的几种运行状况
3.1.1正常运行这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况;
3.1.2故障这种状况系指某些设备或线路出现了危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况;
3.1.3异常运行这种状况系指系统的正常运行遭到了破坏,但尚未构成故障时的运行状况。
3.2继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:
①正常运行状态。这是保护装置的正常状态。
②检修状态。为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。
③正常动作状态。这是指被保护元件发生故障时,保护装置正确动作于跳闸的状态。
④误动作状态。是指保护装置不应动作时,它错误动作的状态。例如,由于整定错误,发生区外故障时,保护装置错误动作于跳闸。
⑤拒动作状态。是指保护装置应该动作时,它拒绝动作的状态。例如,由于整定错误或内部机械故障而导致保护装置拒动。
⑥故障维修状态。保护装置发生故障后对其进行维修时所处的状态。
3.3目前常用的评价统计指标
3.3.1正确动作率即一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。
正确动作率=(正确动作次数/总动作次数)×100
用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kv与500kv)之间的对比情况,从中找出薄弱环节。
3.3.2可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。
3.3.3可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t正常工作的概率。可靠度与可用率的不同在于,可靠度中的定义要求元件在时间区间(0,t)连续的处于正常状态,而可用率则无此要求。
3.3.4故障率h(t)是指元件从起始时刻直到时刻t完好条件下,在时刻t以后单位时间里发生故障的概率。
3.3.5平均无故障工作时间mtbf设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。
3.3.6修复率m(t)是指元件自起始时刻直到时刻t故障的条件下,自时刻t以后每单位时间里修复的概率
3.3.7平均修复时间mttr平均修复时间是修复时间的数学期望值。
4、配电网继电保护装置的实际运用
近年来,由于电网继电保护技术均已达到先进水平,在经过实际应用,相信该系统在电网安全运行方面将发挥重要作用。
电网继电保护及故障信息处理系统主要由网、省、地级电力调度中心或集控站的主站,各级电厂、变电站端的子站及录波装置通过电力信息传输网络共同组成。系统设计目的是能够切实提高电网的信息化和智能化,并具有高安全性和高可靠性,要优先采用电力调度数据网络,保障故障录波数据能实时上传。因此系统必须具有分层、分布、开放、易扩展的特性。
该系统实现了事故推画面、故事汇总、网络探测和跨安全区应用的技术创新,至投入使用以来,经历了夏季高温用电高峰、暴风雨,冬季冰雪等突发事件的检验,结果表明继电保护装置能够较好的保证电网的安全运行。
结束语
在智能配电系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。为了确保供电系统的正常运行,必须正确地设置继电保护装置并准确整定各项相关定值,从而保证系统的正常运行。
参考文献
继电保护的概念篇3
【关键词】继电保护;隐藏故障;监测
中图分类号:U262文献标识码:A
前言
所谓继电保护是指对电力系统中发生的故障或异常情况进行检测,针对相应的检测情况来发出相应的报警信号,或者直接将系统中的故障部分进行相关隔离和切除的一种重要措施。当电力系统中由于自然的、人为的或设备故障等因素发生故障时,继电保护装置必须能够及时快速的把系统故障进行有效切除,从而来保证电力系统的安全运行稳定,最大限度的降低故障引起的人生伤害和财产损失。
继电保护系统的隐藏故障是指继电保护装置中存在的一种永久缺陷,这种缺陷只有在系统发生故障等不正常运行状态时才会表现出来,其直接后果是导致被保护元件的错误断开。多次大停电事故的分析结论表明,这种由于继电保护装置的隐藏故障引起的大停电事故发生概率虽然很小,但危害极大,这类事故一旦发生将会引起电网的连锁反应,事故并会迅速蔓延导致电网崩溃,给电网带来灾难性的后果。
一、继电保护隐藏故障
目前关于隐藏故障的研究主要侧重于两个方面:一是风险评估,研究分析保护系统存在的隐藏故障对大规模连锁停电的影响,并找出系统中的薄弱环节;二是研究开发继电保护隐藏故障的监视与控制系统,通过该系统可以直观的辨识出隐藏故障,从而使保护做出正确的
动作。
1基于隐藏故障的风险评估
继电保护隐藏故障对电力系统的危害程度取决于隐藏故障的发生位置,不同位置的隐藏故障对电力系统的危害程度是不一样的。为了评估隐藏故障对电网的危害程度,有学者提出将风险理论应用于评估由于隐藏故障造成的电力系统连锁故障,通过建立隐藏故障的风险评估体系,对所有可能存在的隐藏故障进行风险评估,从而找出电力系统中的薄弱环节,据此提出由于隐藏故障造成连锁故障的预防措施。
隐藏故障风险评估的基本思想是利用继电保护隐藏故障的概率,根据系统的拓扑结构对连锁故障模型进行仿真计算。最后为了能够定量地分析风险大小,采用两个因素来参与评价风险:事故的可能性和严重性,将风险定义为事故的概率与事故后果的乘积。由于隐藏故障易造成连锁停电事故,故隐藏故障的风险可用连锁停电事故的风险来等同考虑。
2隐藏故障的监测和控制
继电保护系统的隐藏故障是造成电网连锁故障的重要原因之一,因此,很有必要对继电保护系统的隐藏故障进行监测。1996年,A.G.Phdake和J.S.Thorp学者提出了针对保护系统的隐藏故障监测和控制方案如图1所示。由图1可知,该系统用来监测和控制电网中那些具有高脆弱性指数的保护装置,隐藏故障监测与控制系统通过对输入继电器的信号进行分析诊断,事实上也就是复制该保护的算法和功能,最后将监测与控制系统的输出结果与运行中的继电保护装置的输出结果进行逻辑关系的比较,若二者输出结果相同,保护跳闸命令被允许;反之,跳闸指令被禁止,此时,该系统相当于起到闭锁的作用。
二、继电保护隐藏故障监测方法
由继电保护隐藏故障的定义可知,继电保护装置的隐藏故障在正常运行时并不表现出来,而在系统出现压力的情况下才显现,也就是说隐藏故障只会在系统运行中暴露出来,因此,传统的离线式检测方法并不适合用来监测隐藏故障,必须研究针对继电保护装置隐藏故障的在线监测系统。目前尚无专门的监控系统用以检测运行中的继电保护系统是否存在隐藏故障,而是仅依靠微机保护中一些简单的自检功能来保障保护系统的运行。不管是保护系统的定期计划检修还是保护装置自检功能,都属于离线式的检测方法,均没有考虑装置现场运行中的情况,因此,这些目
前广泛采用的离线检测方式都不是可以信赖的检测方案,无法实现对于继电保护隐藏故障的检测。
目前广泛采用的常规检测方法往往是在保护装置离线情况下进行的,由于隐藏故障是在运行过程中才爆发,因此传统的检测方法并不能对隐藏故障进行全面的检测。考虑到隐藏故障存在的特点,完善的检测方法应做到对保护装置进行在线监测,这样才能够在系统暴露出隐藏故障时,及时发现其中的错误动作倾向,对存在隐藏故障的保护装置进行动作闭锁或者使其退出运行,阻止由于保护装置的隐藏故障而造成保护误动作的行为。
对隐藏故障而言,当系统在正常运行的时候,该故障一般不会表现出来;但是,当系统工作不正常时,往往暗示存在其中的隐藏故障已经达到了承受极限。当系统运行状况超过这个极限,保护装置就会出现误动或拒动的错误行为,因此,保护装置的状态经历了一个从正常到故障的动态过程,具体如图2所示。
三、结束语
在电力系统的运行过程中,虽然因为连锁故障造成的大规模的用户造成失电的现象很少出现,但是,我们还应该坚持防患于未然的理念,争取将这一灾难性的事故造成的损伤降低到最低,因为一旦发生相应的故障事故,那么将会造成严重的经济损失,影响日常的生产和生活。为了保证电力系统的安全稳定运行,对继电保护隐藏故障进行相应的评价和分析,对于保证电网的安全稳定运行具有一定的理论意义和现实意义。
参考文献
[1]韩祯祥,薛禹胜,邱家驹.2000年国际大电网会议系列报道―电网互联的现状和前景[J].电力系统自动化,2000,24:1-4.
继电保护的概念篇4
关键词:Agent;多Agent技术;继电保护
中图分类号:TM774文献标识码:A文章编号:1007-9599(2011)09-0000-01
RelayProtectionSystemBasedOnMulti-Agent
SuZikang,JiangBaolei
(SchoolofInformationandElectricalEngineering,CUMT,Xuzhou221008,China)
Abstract:Multi-AgenttechnologyinrecentyearsthefieldofdistributedAIhasbeenwidelyused,thispaperdescribesMulti-AgentSystems(MAS)oftheprotectionsystemofthestructure,characteristics,
andtoitssystemarchitecture,communication,reliabilityandotherissueswereoutlined.
Keywords:Agent;Multi-Agent;Relayprotection
一、Agent与多Agent基本概念
Agent与多Agent系统(MAS)概念源于人工智能领域,是分布式人工智能的主要方向之一。概括的说,Agent是对过程运行中的决策或控制任务进行抽象而得到的一种具有主动行为能力的实体,利用数学计算或规则推理完成特定操作任务,并通过消息机制与过程对象及其他Agent交互以完成信息传递与协调。Agent具有自治性、可通信性、面向目标性和针对环境性等特性。
由于单个Agent的知识、信息和资源是受限的,不能用于较复杂问题的解决,可用适当的体系结构把多个Agent连接起来构成多Agent系统(MAS)共同完成一个特定任务。MAS通过协调来组织全组Agent完成一些任务,这些Agent分散分布且独立运行,相互协调并能为单个个体服务,当Agent之间的目标或行为发生冲突时,Agent之间能够通过竞争或者协商来协调处理冲突,协同完成一个任务。MAS有以下优势:能通过Agent间协作增强问题求解能力和可靠性;各Agent可并行操作,效率高;Agent间通信协作,具有较好的容错能力;各Agent既可协同工作,也可单独工作,有较高的灵活性。所以,它不仅具备一般分布式系统的资源共享、易扩展、可靠性、灵活性、实时性的特点,而且可以通过各Agent协调解决大规模的复杂问题,其系统有很好的鲁棒性、可靠性和自组织能力。
二、基于MAS的继电保护系统
(一)基于MAS的常规继电保护系统
Wong和Kalam在1995年“能量管理和电力输送”及1996年“智能系统在电力系统中的应用”国际会议上,将Agent技术引入继电保护领域。基于MAS的保护系统由组织层、协调层和执行层组成。故障的检测隔离由各层的Agent协作完成,其结构如图1所示。
图1.基于MAS的保护系统结构
Agent分层分布,对应不同层的任务,如协调层的搜索Agent和跳闸Agent等;各Agent独立完成各自的任务,如:状态检测、网络重组等;能据外界变化快速做出反应,如断路器不能断开时,搜索跳开邻近断路器;各个Agent间相互通信,将信息就地化、分布化并共享化,利用电力线路沿线的多点信息共享综合加速保护动作、更准地判断和隔离故障区段;多个Agent协作完成保护任务,通过局部Agent和管理Agent协调各Agent的行为,以更好适应电力系统的实际运行状态,提高保护的快速性和准确性;Agent能依需要激活上级Agent或与同级Agent交互,如状态检测Agent感受到开关变位时激活网络重组Agent,改善继电保护的自适应性与可靠性;一种保护任务可由多个Agent组合完成,有很好的灵活性、可移植性。
(二)基于MAS的协作继电保护系统
常规的继电保护存在故障判断和定位困难,后备保护整定时间过长且故障隔离区域过大等缺陷。1997年,YasushiTomita等人提出利用多Agent的相互协作实现电力系统的保护。多Agent协同有四个基本目标:通过并行性提高任务完成效率;通过共享资源扩展完成任务的范围;通过任务的重复分配增加任务完成的可能性;通过避免有害相互作用降低任务之间的干扰。该方法中的Agent分为:设备Agent,主要采集和管理设备的数据,并可用各自间的联系数据表示网络的拓扑结构;移动Agent,可在各个设备Agent之间运动,使用其数据;保护Agent,用以检测和隔离故障;重组Agent,当电力系统拓扑结构发生变化时,对保护系统进行网络重组。无论实际电力系统的运行状况如何发生变化,保护系统都能有效地进行故障诊断隔离,最大限度减少故障隔离区。
三、MAS中Agent的通信问题
各Agent间必须能有机地合作,而合作的实现很大程度上依赖于通信。按通信机制Agent间通信方式有:点对点式,广播式,转发式和混合式。实际系统中,常用混合式,对Agent分组,每个组都有自己的组区域(黑板),可以同时实现公共数据区域的广播通信与组内的组播通信以及点对点和转发通信。若按通信介质可分为光纤通信,载波通信和同轴电缆通信。在条件允许,尽量采用能较好兼顾快速性、可靠性以及投资等方面需要的光纤或同轴电缆通信。
四、结束语
电力系统继电保护是电力系统安全稳定运行的保证,MA技术是计算机技术、人工智能和网络技术等多学科交叉而形成的新兴分支。MAS的保护系统在保护的协同和整体性能上更具自适应性、灵活性、可靠性和容错能力。随着研究的深入多Agent在电力系统继电保护的应用应该有更为广阔的前景。
参考文献:
[1]王惠中,李文龙.基于Agent技术的继电保护的研究现状及发展趋势[J].工业仪表与自动化装置,2010,6
[2]陈艳霞.基于多Agent技术的继电保护系统[J].电力系统自动化,2002,6,25(26):12
继电保护的概念篇5
关键词继电保护;隐藏故障;监测
中图分类号TM77文献标识码A文章编号1673-9671-(2012)051-0180-01
所谓继电保护是指对电力系统中发生的故障或异常情况进行检测,针对相应的检测情况来发出相应的报警信号,或者直接将系统中的故障部分进行相关隔离和切除的一种重要措施。当电力系统中由于自然的、人为的或设备故障等因素发生故障时,继电保护装置必须能够及时快速的把系统故障进行有效切除,从而来保证电力系统的安全运行稳定,最大限度的降低故障引起的人生伤害和财产损失。
继电保护系统的隐藏故障是指继电保护装置中存在的一种永久缺陷,这种缺陷只有在系统发生故障等不正常运行状态时才会表现出来,其直接后果是导致被保护元件的错误断开。多次大停电事故的分析结论表明,这种由于继电保护装置的隐藏故障引起的大停电事故发生概率虽然很小,但危害极大,这类事故一旦发生将会引起电网的连锁反应,事故并会迅速蔓延导致电网崩溃,给电网带来灾难性的后果。
随着电网发展规模的不断扩大,电网的安全运行显得尤为重要,隐藏故障依然是威胁电网安全的主要隐患之一。因此开展对继电保护隐藏故障的研究具有重要的理论和现实意义。
1继电保护隐藏故障
目前关于隐藏故障的研究主要侧重于两个方面:一是风险评估,研究分析保护系统存在的隐藏故障对大规模连锁停电的影响,并找出系统中的薄弱环节;二是研究开发继电保护隐藏故障的监视与控制系统,通过该系统可以直观的辨识出隐藏故障,从而使保护做出正确的
动作。
1.1基于隐藏故障的风险评估
继电保护隐藏故障对电力系统的危害程度取决于隐藏故障的发生位置,不同位置的隐藏故障对电力系统的危害程度是不一样的。为了评估隐藏故障对电网的危害程度,有学者提出将风险理论应用于评估由于隐藏故障造成的电力系统连锁故障,通过建立隐藏故障的风险评估体系,对所有可能存在的隐藏故障进行风险评估,从而找出电力系统中的薄弱环节,据此提出由于隐藏故障造成连锁故障的预防措施。
隐藏故障风险评估的基本思想是利用继电保护隐藏故障的概率,根据系统的拓扑结构对连锁故障模型进行仿真计算。最后为了能够定量地分析风险大小,采用两个因素来参与评价风险:事故的可能性和严重性,将风险定义为事故的概率与事故后果的乘积。由于隐藏故障易造成连锁停电事故,故隐藏故障的风险可用连锁停电事故的风险来等同考虑。
1.2隐藏故障的监测和控制
继电保护系统的隐藏故障是造成电网连锁故障的重要原因之一,因此,很有必要对继电保护系统的隐藏故障进行监测。1996年,A.G.Phdake和J.S.Thorp学者提出了针对保护系统的隐藏故障监测和控制方案如图1所示。由图1可知,该系统用来监测和控制电网中那些具有高脆弱性指数的保护装置,隐藏故障监测与控制系统通过对输入继电器的信号进行分析诊断,事实上也就是复制该保护的算法和功能,最后将监测与控制系统的输出结果与运行中的继电保护装置的输出结果进行逻辑关系的比较,若二者输出结果相同,保护跳闸命令被允许;反之,跳闸指令被禁止,此时,该系统相当于起到闭锁的作用。
2继电保护隐藏故障监测方法
由继电保护隐藏故障的定义可知,继电保护装置的隐藏故障在正常运行时并不表现出来,而在系统出现压力的情况下才显现,也就是说隐藏故障只会在系统运行中暴露出来,因此,传统的离线式检测方法并不适合用来监测隐藏故障,必须研究针对继电保护装置隐藏故障的在线监测系统。目前尚无专门的监控系统用以检测运行中的继电保护系统是否存在隐藏故障,而是仅依靠微机保护中一些简单的自检功能来保障保护系统的运行。不管是保护系统的定期计划检修还是保护装置自检功能,都属于离线式的检测方法,均没有考虑装置现场运行中的情况,因此,这些目
前广泛采用的离线检测方式都不是可以信赖的检测方案,无法实现对于继电保护隐藏故障的检测。
目前广泛采用的常规检测方法往往是在保护装置离线情况下进行的,由于隐藏故障是在运行过程中才爆发,因此传统的检测方法并不能对隐藏故障进行全面的检测。考虑到隐藏故障存在的特点,完善的检测方法应做到对保护装置进行在线监测,这样才能够在系统暴露出隐藏故障时,及时发现其中的错误动作倾向,对存在隐藏故障的保护装置进行动作闭锁或者使其退出运行,阻止由于保护装置的隐藏故障而造成保护误动作的行为。
对隐藏故障而言,当系统在正常运行的时候,该故障一般不会表现出来;但是,当系统工作不正常时,往往暗示存在其中的隐藏故障已经达到了承受极限。当系统运行状况超过这个极限,保护装置就会出现误动或拒动的错误行为,因此,保护装置的状态经历了一个从正常到故障的动态过程,具体如图2所示。
3结束语
在电力系统的运行过程中,虽然因为连锁故障造成的大规模的用户造成失电的现象很少出现,但是,我们还应该坚持防患于未然的理念,争取将这一灾难性的事故造成的损伤降低到最低,因为一旦发生相应的故障事故,那么将会造成严重的经济损失,影响日常的生产和生活。为了保证电力系统的安全稳定运行,对继电保护隐藏故障进行相应的评价和分析,对于保证电网的安全稳定运行具有一定的理论意义和现实意义。
参考文献
[1]韩祯祥,薛禹胜,邱家驹.2000年国际大电网会议系列报道—电网互联的现状和前景[J].电力系统自动化,2000,24:1-4.
[2]王渊.基于Web的继电保护信息管理系统的设计[J].电工技术,2008,4:14-16.
继电保护的概念篇6
关键词实现;集合保护;输电线路
中图分类号TM7文献标识码A文章编号1674—6708(2012)76—0050—02
0引言
从各种统计可知,许多大面积发生停电大都是因保护存在缺陷而引发出来,特别是后备保护。而且随着电力市场的改革也给电力安全提出了新要求,所以研究继电保护确保可靠、安全及灵敏的运行,进一步推动电网高速发展是发展的必然趋势。
1输电线路集合保护
1.1集合保护概念
要探究输电线路的集合以及实现,首先要对集合保护进行全面了解和理解,只有在这个基础上去探究才具有真正的价值,才具备现实意义。
所谓集合保护主要是在现有的保护基础上,引出集合概念,之后使用通行网络来建立保护集合的上层,和变电站中的控制系统连接,进而共同控制站内设备运行情况。集合保护主要包含了两个方面:1)物理集合,就是将变电站中一切保护集合,成为了变电站中保护主站,还要将各种保护决策传递到下面的站内设备,事实上集合保护的功能类似于变电站的监控系统,所以集合保护可以直接和监控系统相连接,进而获取到断路和保护器的信息,还要通过控制中心来实施集合保护决策;2)概念集合;就是将和保护设备有关保护集合。比如输电线路作为案例,输电线路的概念集合就是本端保护、相邻线路保护、对端保护及影响较大其他输电线路的保护等。所谓影响较大即是断路器状态发生改变能够影响到被保护设备负荷的状态。由此可知,概念集合内的保护一定要服从于电网结构,而且在集合内各个保护之间要必须通信,所以也应该服从于电力网络结构。
集合保护要实现必须以物理集合作为基础,以概念集合作为实质。图1所示网络之中就包含了多种电网结构,极易确定出物理集合,即是A,B,……,I站上各自安装有集合保护,比如B站上物理集合是{8,9,11}。按照保护11作为案例,其中概念集合是{11,16,12,10,9,8,7},其中包含各种子集合:自身{11},对端的保护子集{12},而下级的保护子集为{10,16},背侧的保护子集为{9,8},上级的保护子集为{7,10},其中影响较大保护子集是{10,9}。
1.2集合保护作用
从各种现状来看,集合保护应用于输电线路之上确实有效的保障了输电线路正常输送电能,起到了不可估量之作用。而且,通过集合保护就可以在一定的范围内获取有挂保护与断路器信息,发挥出强大作用。具体而言,集合保护主要具备如下一些作用。
1)主保护一旦拒动之时,其后备保护立即开始动作;为了确保主保护出现拒动现象之时依然能够解除故障,在电力系统各个电力设备以及输电线路上均安装了后备保护,其中包含了远后备保护与近后备保护。其中远后备保护主要是通过相邻设备保护来实现解除设备故障,是属于一种后备功能;而近后备保护且是电力设备中另一套保护来实现的后背功能。因为要确保具备选择性,后备保护大都要通过一定的延时之后才能够切除故障。但是集合保护就不但能够确保正确动作还能够有效缩短近后备保护动作带来的延时,有效的确保了输电线路安全稳定的运行。比如上面的图1,在靠近保护7位置上出现了故障K1之时,主保护就瞬时开始动作保护7,因为保护8距离故障比较远,就要由近后备保护依照整定配合延时的时间开始动作。当集合保护开始动作之后,就能够依据对端保护7上I段动作发出的信息来判断输电线路故障,进而告知控制中心将故障断路器8跳开;
2)一旦继电保护出现失效,集合保护就可以发出控制命令让断路器跳闸,进而除掉故障,如果输电线路上仅仅配备了单套保护之低压电网,就十分有效了。一旦出现了TA断线或者其他的原因,就有可能导致继电保护失效,如果此时还是依靠远后备保护解除故障,必然会增加切除的时间。
比如上图中,一旦故障K2出现于线路CF之上,一旦保护13发生失效就只能凭上级保护5和2依照远后备保护进行动作。集合保护开始动作之后,就能够依据对端保护15、14上II段的启动信息及背侧的保护4和6,以及上级保护2和5上I段不能够起动,共同来判定该线路的故障,进而告知到控制中心启动断路器13开始动作;
3)如果输电线路上并没有安装失灵保护之时,一旦断路器出现失灵集合保护就能够缩短远后备进行保护动作时间,进而确保了断路器的失灵保护动作。从现实核算可知,断路器出现失灵保护带来的经济损失是小于使用远后备保护,故此使用没有安装失灵保护系统具有重要的意义。
对于图1中,一旦电网的故障发生在K3,如果断路器11出现失灵,但是在11上并没有安装有失灵保护,就必须要远后备保护7和10按照整定的时限来动作,并且致使变电站I出现停电现象。一旦集合保护开始动作,就能够依据自身出口信息和断路器状态,依据这些信息对上级的后备保护进行动作,进而来判断断路器是否存在失灵,同时还要将结果信息传达到控制中心去保护背侧断路器9和8,这样就不会对变电站I供电造成影响;